o Using nearest neighbours to combine distance and tree-search based tree reconstruction methods
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1. Nearest neighbours induce topological constraints

The set of nearest neighbours (NNs) inferred from the distance matrix constrains the topology of the (true) tree.
Exploiting these constraints during tree-search reduces the size of the tree-space that has to be searched.
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2. Inferring nearest neighbours
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3. Computing the size of the constrained tree-space

Nearest-neighbour graph Counting connected component trees (CC-trees)

The NN pairs form a directed graph that is acyclic The two extreme cases are:
except for possibly a single cycle of length two in P S

each connected component (CC).
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In general: in-degrees determine number of CC-trees
Counting compatible trees

We count compatible trees by counting the possible combinations of
(a) a CC-tree for each connected component . CG,

(b) a backbone connecting these CC-trees + attachment branches (Caley formula)

4. Quantifying the possible performance benefits
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5. Efficiently searching the constrained tree-space

The non-crossing theorem allows efficient detection of nearest-neighbour interchanges
(NNI) that leave the constrained tree-space.
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