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Scientific Method

Generic statistical paradigm Statistical phylogenetic paradigm
pose a substantive question what is the phylogeny of my study group?
develop a stochastic model with develop a phylogenetic model with a tree (and
parameters that, if know, would branch lengths) and a Markov model describing
answer the question how traits change over the tree

collect observations that are assemble a data matrix (e.g., of DNA
informative about model sequences) sampled from members of your
parameters study group

find the best estimate of model find the best estimate of phylogeny (and other
parameters (by some means) model parameters) using a likelihood-based
conditioned on (i.e., given) the method (maximum-likelihood or Bayesian inference)

data at hand



Scientific Method

Generic statistical paradigm Statistical phylogenetic paradigm
pose a substantive question what is the phylogeny of my study group?
develop a stochastic model with develop a phylogenetic model with a tree (and
parameters that, if know, would branch lengths) and a Markov model describing
answer the question how traits change over the tree

collect observations that are assemble a data matrix (e.g., of DNA
informative about model sequences) sampled from members of your
parameters study group

find the best estimate of model find the best estimate of phylogeny (and other
parameters (by some means) model parameters) using a likelihood-based
conditioned on (i.e., given) the method (maximum-likelihood or Bayesian inference)

data at hand



Example: Sex-ratio at birth

Table 1. SEX-RATIO OF GREY SEAL CALVES ON THE FARNE ISLANDS
ACCORDING TO THEIR DATE OF BIRTH

Year Date of birth
Oct, 14-27 | Oct. 28-Nov. 10 | Nov. 11-24|After Nov.24
g 9 3 @- 3 9 3 @
1952 8 4 16 18 12 8 8 8
19563 12 8 11 16 b 10 3 8
1955 5 8 43 42 20 2b 9 14
1956 7T 6 43 47 47 47 | 24 32
1957 36 22 114 986 67 601 13 18
19568 1 1 57 38 45 381 11 10
1959 2 2 69 61 34 41 9 14
Total 71 bl 353 318 230 229! 77 104
Sex-ratio] 100 : 71-8 100 : 901 100 : 99-6 | 100 : 135-1

What is the
probability of a

female pup in
grey seals?
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Example: Sex-ratio at birth

Table 1. SEX-RATIO OF GREY SEAL CALVES ON THE FARNE ISLANDS
ACCORDING TO THEIR DATE OF BIRTH

Year Date of birth
Oct, 14-27 | Oct. 28—Nov. 10 | Nov. 11-24|After Nov.24
3 9 38 - 3 e 3 9
1052 8 4 16 18 12 8 8 8
1963 12 8 11 16 5% 10 3 8
1955 b 8 43 49 20 26 9 14
1956 7 6 43 47 47 47 | 24 32
1957 386 22 114 98 67 60 ! 13 18
1968 1 1 57 38 45 38 | 11 10
1959 2 2 69 61 34 41 9 14
Total 71 b1 3563 318 230 229 | 77 104
Sex-ratio|] 100 : 71-8 100 : 901 100 : 996 [ 100 : 1351
P(male) = p
P(female) =1—p
1433\ -3; 1433—713
Pz =731,n=1433) = p™H(1 —p)

731
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Bayesian vs Frequentist

Bayesian: Frequentist:




Bayesian vs Frequentist

Bayesian: Frequentist:
« Condition on observing the data. * Assume data was observed from

repeated experiments.
Are we asking how the data and parameter estimates behave under repetition
(e.g., in simulations or mass-production) or asking about one/few unique observations?
. Estimate posterior probability of * Find parameter value with highest
parameter. likelihood.

Both methods are model based inferences and
use a likelihood function.

« The posterior distribution provides » Likelihood can be used to generate
a credible interval. a confidence interval.

The maximum likelihood estimate is good if you want a single estimate,
the credible interval is good if you want a measure uncertainty.

« Assume that each parameter has  There is only one true parameter.
prior probability. Parameters are Parameters do not have a
treated similar to observations. probability distribution and are not

random variables!

Choosing priors can be difficult but is very important.
Priors allow us to build hierarchical models easily.
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Excursus: Primer on Probabilities

Joint Probabilities

P(@) = P(B,S) = 1/10
P(@) = P(R,S) = 2/10
P(@)) = P(B,D) = 5/10
P(@) = P(R,D) = 2/10

Marginal Probabilities

P(C ) +P(le)=P(B)=
P(()) + P(@®) = P(R) = 4/10
P(()) + P(@) = P(S) = 3/10
P((e)) + P(@®)=P(D) =

Solid  Dotted Marginal
sue 1/10(5/10|6/10
Red | 2/10(2/10(4/10
Marginal /10| 7/10




Excursus: Primer on Probabilities

Joint Probabilities Solid Dotted

Sue 1/10(5/10

Marginal

6/10

Red = 2/10(2/10

4/10

Marginal 3/1 O 7/1 0

Conditional Probabilities

P(S|R) = P(R,S)/P(R)

P(R,S)
P(R,S) + P(R,D)

P(@)
P(@®) + P(@®)




Bayes’ Rule

P( Parameters | Data) = P(Parameters | Data )

Multiply with P(Data): P( Parameters | Data ) x P( Data )

P( Data )

Apply rule of conditional probability:
P( Parameters, Data )

P( Data )

Again, apply rule of conditional probability:

P( Data | Parameters ) x P( Parameters )

P( Parameters | Data) =

/ P( Data )

Posterior Prior
Likelihood

Marginal Likelihood



Likelihood Function

The likelihood function is defined as the probability of observing the data, X,
as a function of the model parameters, O.

L(©) = f(X,0)

For example, in phylogenetic tree estimation the likelihood is defined as the probability of
observing the sequence alignment, X, under a fully specified phylogenetic model.

L(t,v,®) = P(X|1,v, D)

tree topology
branch lengths

substitution-model parameters
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Example: Sex-ratio at birth (continued)

Prior: Likelihood:

a—1 A\ —1 m,
R Pl = (" 1 ) - p)f
Posterior:
Pplz) — P(m@(;]g(p)
P(plz) — 1P(w!p)><P(p)

Jo P(x|p) x P(p)dp

(")t (1 = p) I g

1 m+ m—+o— —
T gt )
pm-l—oz—l(l _p)f-|-5—1

Jif (pra=1(1 — p)/+A=1) dp

P(p|r) =

P(pl|r) =

— Beta(m + a, f + 5)



Example: Sex-ratio at birth (continued)

Prior: Beta(1,1) Prior: Beta(10,10)

—— Posterior
---- Prior
w p—

—

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Y p

95% HPD (Highest Posterior Density)



Approximating the Posterior Probability using
Markov chain Monte Carlo sampling

What if you don’t know the analytical solution for the posterior distribution?

Use the Metropolis-Hastings algorithm to sample from the posterior distribution!

#Samples = 10 #Samples = 100 #Samples = 1000 #Samples = 10000
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Approximating the Posterior Probability using
Markov chain Monte Carlo sampling

The Metropolis-Hastings algorithm

1. Initialize the chain with some random values for all parameters,
e.g., the tree with branch length.

2. Select a parameter to update according to some proposal
mechanism (i.e., move).

3. Propose a new value, @', for the selected parameter.
4. Calculate the probability R of accepting the move.

R — min[l FX]00)| | £(07)| | £(616")

NV F(X[0)| | £(8) | |f(07]6)

Likelihood Prior Proposal
Ratio Ratio Ratio

5. Generate a uniform random variable, u ~ Uniform(0,1), and accept
if R > u.

6. Repeat step 2-5 and store the parameter values to a file every k
iterations.



Sliding Window MCMC Move

Sliding window move

1. Draw a random variable u ~ Uniform(—4, J)
2. Update 6 by the amount of u

current parameter value

 the proposal density is controlled by the tuning parameter, 0o
- when ois large, larger changes will be proposed
« when o is small, smaller changes will be proposed

Works well for location parameters.

theta ~ dnNormal( mean, standard deviation )
moves.append( mvSlide(epsilon, delta=0.8, tune=true, weight=3.0) )




Scaling (multiplier) MCMC Move

Scaling move

1. Draw a random variable u ~ Uniform(—A, A)
2. Multiply @ by the amount of "
3. Compute the Hastings ratio as HR = e

0

current parameter value
 the proposal density is controlled by the tuning parameter, 0o

- when 0is large, larger changes will be proposed

« when o is small, smaller changes will be proposed
Equivalent to sliding-window proposal with log-transformed x axis
Works well for rate parameters.

br lens[i] ~ dnExponential(10.0)
moves.append( mvScale(br lens[i],lambda=1,tune=true,weight=1) )




Approximating the Posterior Probability using
Markov chain Monte Carlo sampling

The Metropolis-Hastings algorithm

1.

Initialize the chain with some random
values for all parameters, e.g., the tree
with branch length.

. Select a parameter to update according to

some proposal mechanism (i.e., move).

. Propose a new value, , for the selected

parameter.

. Calculate the probability R of accepting

the move.

Generate a uniform random variable, u ~
Uniform(0,1), and accept if R > u.

. Repeat step 2-5 and store the parameter

values to a file every k iterations.

3.0

2.0

1.0

0.0
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Approximating the Posterior Probability using
Markov chain Monte Carlo sampling

The Metropolis-Hastings algorithm

1.

Initialize the chain with some random
values for all parameters, e.g., the tree
with branch length.

. Select a parameter to update according to

some proposal mechanism (i.e., move).

. Propose a new value, , for the selected

parameter.

. Calculate the probability R of accepting

the move.

Generate a uniform random variable, u ~
Uniform(0,1), and accept if R > u.
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values to a file every k iterations.
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|
0.0

R = min{l

| | n
02 04 06

06

|
0.8

|
1.0

F(X|07) || f(6°) | | £(016°)

| F(X]6)

likelihood
ratio

f(0)

prior
ratio

f(6'16)

proposal
ratio

|



Approximating the Posterior Probability using
Markov chain Monte Carlo sampling

The Metropolis-Hastings algorithm

1.
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values for all parameters, e.g., the tree
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Approximating the Posterior Probability using
Markov chain Monte Carlo sampling

The Metropolis-Hastings algorithm

1.

Initialize the chain with some random
values for all parameters, e.g., the tree
with branch length.

. Select a parameter to update according to

some proposal mechanism (i.e., move).

. Propose a new value, , for the selected

parameter.

. Calculate the probability R of accepting

the move.

Generate a uniform random variable, u ~
Uniform(0,1), and accept if R > u.

. Repeat step 2-5 and store the parameter

values to a file every k iterations.
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Approximating the Posterior Probability using
Markov chain Monte Carlo sampling

The Metropolis-Hastings algorithm

1.

Initialize the chain with some random
values for all parameters, e.g., the tree
with branch length.

. Select a parameter to update according to

some proposal mechanism (i.e., move).

. Propose a new value, , for the selected

parameter.

. Calculate the probability R of accepting

the move.

Generate a uniform random variable, u ~
Uniform(0,1), and accept if R > u.

. Repeat step 2-5 and store the parameter

values to a file every Kk iterations.

3.0
|

2.0

1.0

R = min




MCMC Robot

MCMC demonstration software developed by Paul Lewis.

Free Windows and iPhone App: http://www.mcmcrobot.org or
https://phylogeny.uconn.edu/software/#

Same idea for Mac developed by John Huelsenbeck.
http://cteg.berkeley.edu/software.html


http://www.mcmcrobot.org
http://www.mcmcrobot.org

Effective Sample Size

These are MCMC runs with 5000 iterations. How many samples from the posterior
do these represent?

ttttt

The number of independent samples equivalent to these correlated samples is called
the effective sample size.




Assessing Convergence

Small change Large change Medium change
ESS: 67 ESS: 115 ESS: 3690

; i
W H Mﬁu %MM

10000 20000 30000
55555

20000 30000 40000 40000

Good acceptance rate is 0.45 for single parameter and 0.23 for
multiple parameters

Auto-tuning can set the tuning parameter to achieve good acceptance
rates

Effective sample size (ESS) should be >625



Summarizing MCMC output

Tracer

A Marginal Density | Joint-Marginal

dad Trace

Summary Statistic

mean
stderr of mean

stdev

variance

median

value range

geometric mean

95% HPD interval
auto-correlation time (ACT)
effective sample size (ESS)
number of samples

birth_rate

0.1615
1.4179E-4
9.5138E-3
9.0512E-5
0.1613

[0.1274, 0.2022]
0.1613

[0.1428, 0.1796]
10

4501

4501

o0 @
Trace Files:
Trace File States Burn-In
primates_Yule_ru...| 50000 5000
L+ |- Reload
Traces:
Statistic Mean ESS Type
Posterior -1588.378 4501 R
Likelihood -1589.101 4501 R
Prior 0.723 4501 R
bbirth_rate [ 0.162 4501 [R |
Type: (Rjeal (Ont (C)at  * constant

300

250+

200+

—_
(42}
g

Frequency

100+

50+

0.16
birth_rate

0.21




Summarizing MCMC output

\ ® ® Tracer
Trace Files: A Marginal Density [ Joint-Marginal  da4 Trace
Trace File States Burn-In
primates_Yule ru...[50000 5000 Summary Statistic birth_rate

+ Reload mean 0.1615
-= ° stderr of mean 1.4179E-4
stdev 9.5138E-3
Traces: variance 9.0512E-5
Statistic ESS Type median 0.1613
Posterior 4501 R value range [0.1274, 0.2022]
Likelihood 4501 R geometric mean 0.1613
Prior 4501 »] QLo LUDN intormal [0 1422 017901
[birth_rate
Your .log file from your MCMC analysis.
2501
2001
>
(9
(=
Y 150
o
g
(N
1001
501
0 T T T = T
0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21
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Type: (Rjeal (hnt (C)at  * constant



Summarizing MCMC output

Tracer

A Marginal Density [ Joint-Marginal  da4 Trace

o0 @
Trace Files:
Trace File States Burn-In
primates_Yule_ru...| 50000 5000
L+ |- Reload
Traces:
Statistic Mean ESS Type
Posterior -1588.378 4501 R
Likelihood -1589.101 4501 R
Prior 0.723 4501 R

0.162 14501 [R |

Summary Statistic
mean
stderr of mean
stdev
variance
median
value range
geometric mean
95% HPD interval
auto-correlation time (ACT)
effective sample size (ESS)
number of samples

birth_rate

0.1615
1.4179E-4
9.5138E-3
9.0512E-5
0.1613

[0.1274, 0.2022]
0.1613

[0.1428, 0.1796]
10

4501

4501

300

-

Select your parameter of interest.

Note: The posterior, likelihood, and prior are the computed
scores, not the distribution of the parameters that you want!

Type:

(R)eal

(hnt (C)at  * constant

0 T T
0.12 0.13 0.14 0.15 0.16

017 0.18 0.19 0.2

birth_rate

0.21




Summarizing MCMC output

‘o0 @ Tracer
Trace Files: W A Marginal Density [ Joint-Marginal  da4 Trace
Trace File States Burn-In
[primates Yule ru... 50000 5000 | Summary Statistic birth_rate
- mean 0.1615
ol Bl e stderr of mean 1.4179E-4
- stdev 9.5138E-3
Traces: variance 9.0512E-5
Statistic Mean ESS Type median 0.1613
Posterior -1588.378 4501 R value range [0.1274, 0.2022]
Likelihood -1589.101 4501 R geometric mean 0.1613
Prior 0.723 4501 R 95% HPD interval [0.1428, 0.1796]
[birth_rate [0.162  [4501 [R | auto-correlation time (ACT) 10
effective sample size (ESS) 4501
number of samples 4501
]2 .

Several important summaries for your parameter:

Posterior mean

o n ] ]
95% HPD (Highest Posterior Density)
Effective Sample Size
ol ] | : ,
0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21

Type: (Rjeal (hnt (C)at  *constant

birth_rate

Setup... - Bins: 50 a



Summarizing MCMC output

r

Tracer

Trace Fi

| primate

+]-]

Posterior distribution (95% credible intervals is colored).

Traces:
Statistic
Posterid
Likelihood -1589.101 4501 R geometric mean 0.1613
Prior 0.723 4501 R 95% HPD interval [0.1428, 0.1796]
[birth_rate [ 0.162 4501 |[R | auto-correlation time (ACT) 10
effective sample size (ESS) 4501
number of samples 4501
300
2501
2001
>
(9
S 150-
< 150
o
g
(N
100+
501
0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
birth_rate
Type: (Rjeal (hnt (C)at  * constant
Setup... Bins: 50

0.21




Assessing MCMC convergence

1. Precision

The uncertainty of the estimator must be smaller than a given tolerance value.
That is, longer chains or more samples will not lead to significantly different
estimates, given the tolerated uncertainty.

2. Reproducibility

Repeated chains from random starting values will give the same estimates,
given the tolerated uncertainty.
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Precision of an estimator

' @ @® Tracer
Trace Files: A Marginal Density [ Joint-Marginal  da4 Trace
Trace File States Burn-In
primates_Yule ru...| 50000 5000 Summary Statistic birth_rate
mean 0.1615
= Reload stderr of mean 1.4179E-4
- 9.5138E-3
Traces: 9.0512E-5
Statistic Mean ESS Type 0.1613
Posterior -1588.378 4501 R [0.1274, 0.2022]
Likelihood -1589.101 4501 R 0.1613
Prior 0.723 4501 R [0.1428, 0.1796]
birth_rate [0.162  [4501 [R | 10
4501
pumber of samples 4501
Tracer shows you the standard error (stderr) of the mean
estimator.
o
(=
g 1501
g
(N
100
501
012 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21
birth_rate
Type: (Real (Hnt (C)at  * constant




Mean estimate

0.8

0.6

0.4

0.2

0.0

Precision of an estimator

#Samples = 10

#Samples = 100

#Samples = 1000

#Samples = 10000
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Assessing MCMC convergence

1. Precision

The uncertainty of the estimator must be smaller than a given tolerance value.
That is, longer chains or more samples will not lead to significantly different
estimates, given the tolerated uncertainty.

2. Reproducibility

Repeated chains from random starting values will give the same estimates,
given the tolerated uncertainty.



Comparing trees from replicates

Example: plot of posterior probabilities of clades sampled by two runs

100

bad
convergence

100

100

50

better

100



Improving MCMC Performance

If the chain has not converged (according to precision and/or reducibility), what
can you do?

1. Burnin

Are all samples drawn from the stationary distribution?

2. Mixing

Is the chain efficiently integrating over the joint posterior probability?

3. Sample Size

Have we collected enough samples to adequately describe the posterior
probability distribution?
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Burnin

mymcmc = mecmc(mymodel, moves, monitors, nruns=2, combine="mixed")

mymcmc.burnin(generations=2000,tuninginterval=200)
mymcmc.run(generations=20000,tuninginterval=200)

You can run a pre-burnin in RevBayes.
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Or you can afterwards remove the first 10% or 25% as burnin.
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Mixing

Small change Large change Medium change
ESS: 67 ESS: 115 ESS: 3690
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Good acceptance rate is 0.45 for single parameter and 0.23 for
multiple parameters

Auto-tuning can set the tuning parameter to achieve good acceptance
rates

Effective sample size (ESS) should be >625



Mixing in RevBayes

mymcmc = mcmc(mymodel, moves, monitors, nruns=2, combine="mixed")
mymcmc.run(generations=20000,tuninginterval=200)

“

mymcmc.operatorSummary()
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More about MCMC convergence assessment:

- See talk by Luiza Fabreti
- See the R package convenience (https://github.com/Ifabreti/convenience)
- https://revbayes.qgithub.io/tutorials/convergence/


https://github.com/lfabreti/convenience
https://github.com/lfabreti/convenience

