

Bayesian Phylogenetic Inference using RevBayes:

Introduction to Bayesian Inference

Sebastian Höhna

GeoBio-Center Ludwig-Maximilians Universität, München

Scientific Method

Generic statistical paradigm

pose a substantive question

develop a stochastic model with parameters that, if know, would answer the question

collect observations that are informative about model parameters

find the best estimate of model parameters (by some means) conditioned on (*i.e.*, given) the data at hand

Statistical phylogenetic paradigm

what is the phylogeny of my study group?

develop a phylogenetic model with a tree (and branch lengths) and a Markov model describing how traits change over the tree

assemble a data matrix (e.g., of DNA sequences) sampled from members of your study group

find the best estimate of phylogeny (and other model parameters) using a **likelihood-based** method (maximum-likelihood or Bayesian inference)

Scientific Method

Generic statistical paradigm

Statistical phylogenetic paradigm

pose a substantive question

what is the phylogeny of my study group?

develop a stochastic model with parameters that, if know, would answer the question develop a phylogenetic model with a tree (and branch lengths) and a Markov model describing how traits change over the tree

collect observations that are informative about model parameters

assemble a data matrix (e.g., of DNA sequences) sampled from members of your study group

find the best estimate of model parameters (by some means) conditioned on (*i.e.*, given) the data at hand

find the best estimate of phylogeny (and other model parameters) using a **likelihood-based** method (maximum-likelihood or Bayesian inference)

Example: Sex-ratio at birth

Table 1. SEX-RATIO OF GREY SEAL CALVES ON THE FARNE ISLANDS ACCORDING TO THEIR DATE OF BIRTH

Year	Date of birth			
1952 1953 1955 1956 1957 1958 1959	Oct. 14-27 \$ \$ 4 12 8 5 8 7 6 36 22 1 1 2 2	Oct. 28-Nov. 10 \$\begin{array}{cccccccccccccccccccccccccccccccccccc	Nov. 11-24 3	After Nov.24 8 8 8 8 9 14 24 32 13 18 11 10 9 14
Total Sex-ratio	71 51 100:71·8	353 318 100:90·1	230 229 100:99·6	77 104 100 : 135·1

What is the probability of a female pup in grey seals?

Scientific Method

Generic statistical paradigm

pose a substantive question

develop a stochastic model with parameters that, if know, would answer the question

collect observations that are informative about model parameters

find the best estimate of model parameters (by some means) conditioned on (*i.e.*, given) the data at hand

Statistical phylogenetic paradigm

what is the phylogeny of my study group?

develop a phylogenetic model with a tree (and branch lengths) and a Markov model describing how traits change over the tree

assemble a data matrix (e.g., of DNA sequences) sampled from members of your study group

find the best estimate of phylogeny (and other model parameters) using a **likelihood-based** method (maximum-likelihood or Bayesian inference)

Example: Sex-ratio at birth

Table 1. SEX-RATIO OF GREY SEAL CALVES ON THE FARNE ISLANDS ACCORDING TO THEIR DATE OF BIRTH

Year	Date of birth							
1952 1953 1955 1956 1957 1958 1959	Oct. 1 \$ 8 12 5 7 36 1	9 4 8 8 6 22 1 2	3 16 11 43 43 114 57 69	Nov. 10 \$\prescript{\Phi}{18}\$ 16 42 47 96 38 61	12 5 20 47 67 45 34	9 8 10 25 47 60 38 41	8 3 9 24 13 11	Nov.24 9 8 8 14 32 18 10 14
Total Sex-ratio	71 100 :	51 71·8	353 100 :	318 90·1	230 100	229 99·6	77 100	104 : 135·1

$$P(male) = p$$
$$P(female) = 1 - p$$

$$P(x = 731, n = 1433) = {1433 \choose 731} p^{731} (1-p)^{1433-713}$$

Scientific Method

Generic statistical paradigm

pose a substantive question

develop a stochastic model with parameters that, if know, would answer the question

collect observations that are informative about model parameters

find the best estimate of model parameters (by some means) conditioned on (*i.e.*, given) the data at hand

Statistical phylogenetic paradigm

what is the phylogeny of my study group?

develop a phylogenetic model with a tree (and branch lengths) and a Markov model describing how traits change over the tree

assemble a data matrix (e.g., of DNA sequences) sampled from members of your study group

find the best estimate of phylogeny (and other model parameters) using a **likelihood-based** method (maximum-likelihood or Bayesian inference)

Bayesian vs Frequentist

Bayesian:

Frequentist:

Bayesian vs Frequentist

Bayesian:

Condition on observing the data.

Frequentist:

Assume data was observed from repeated experiments.

Are we asking how the data and parameter estimates behave under repetition (e.g., in simulations or mass-production) or asking about one/few unique observations?

• Estimate posterior probability of parameter.

Find parameter value with highest likelihood.

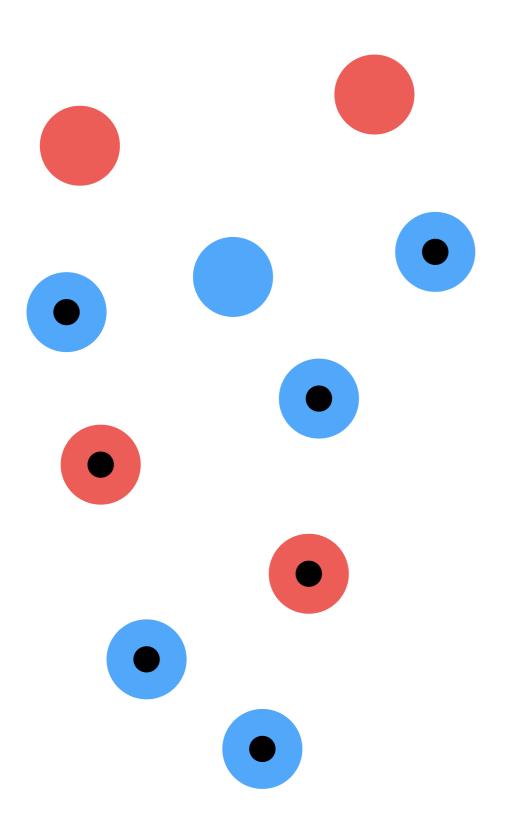
Both methods are model based inferences and use a likelihood function.

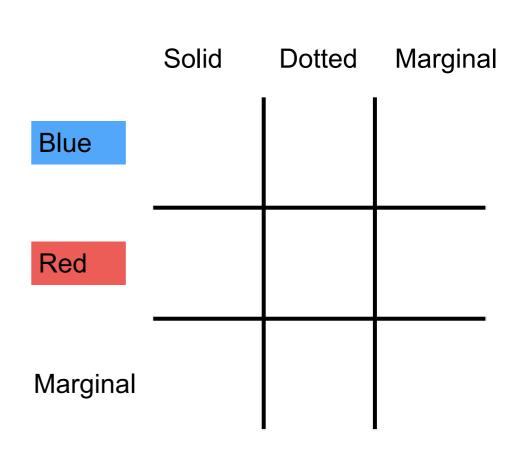
- The posterior distribution provides a credible interval.
- Likelihood can be used to generate a confidence interval.

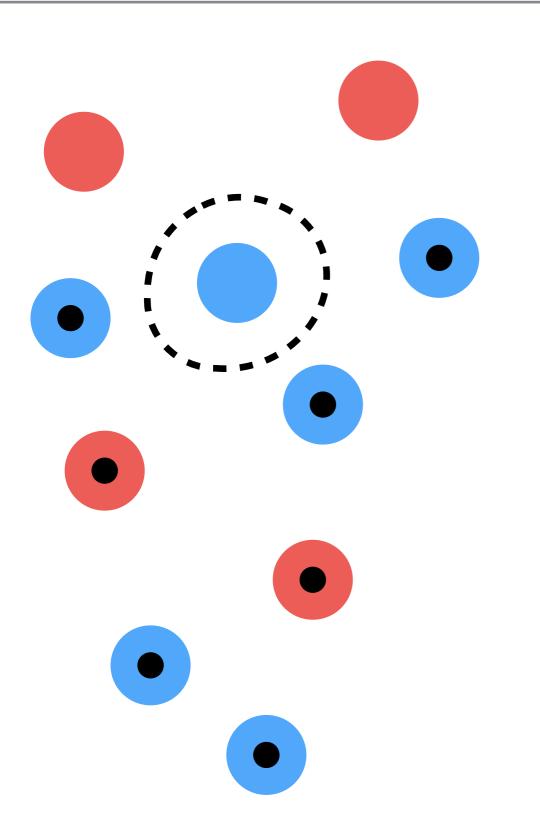
The maximum likelihood estimate is good if you want a single estimate, the credible interval is good if you want a measure uncertainty.

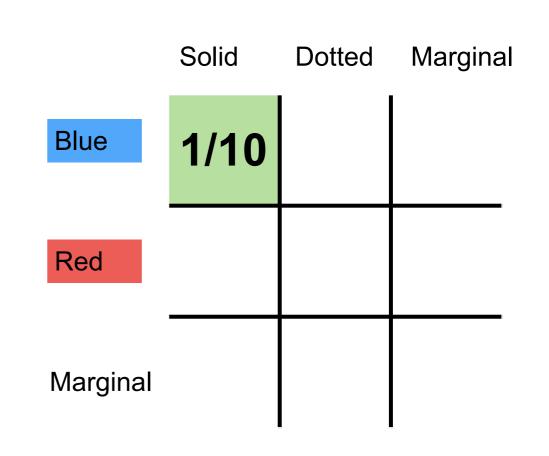
- Assume that each parameter has prior probability. Parameters are treated similar to observations.
- There is only one true parameter.
 Parameters do not have a probability distribution and are not random variables!

Choosing priors can be difficult but is very important. Priors allow us to build hierarchical models easily.

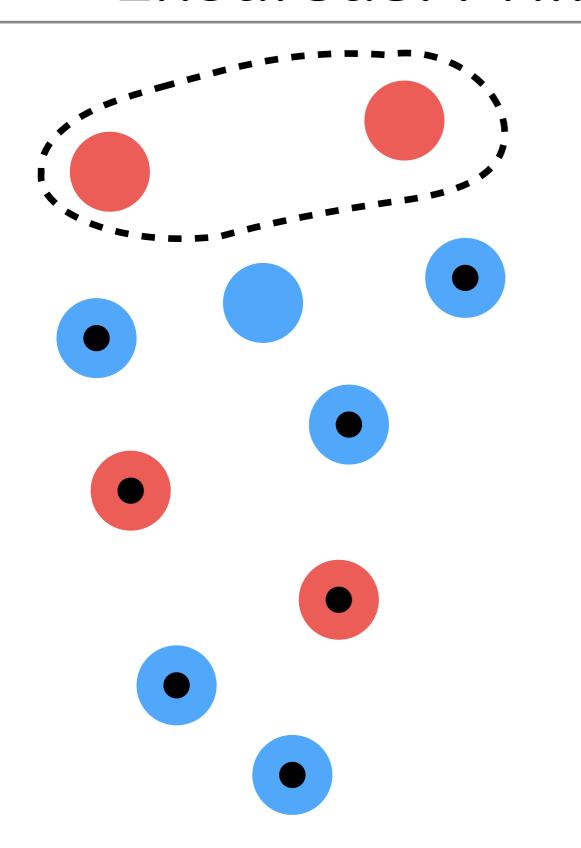


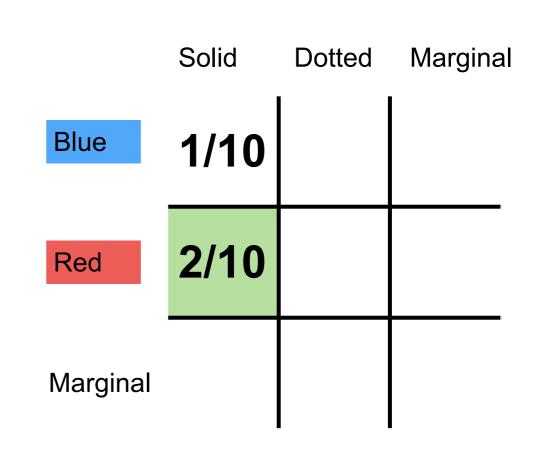




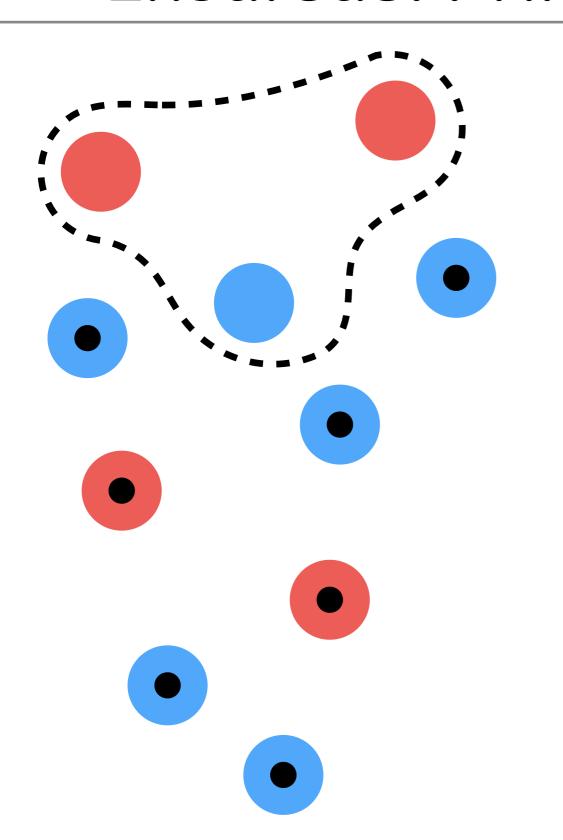


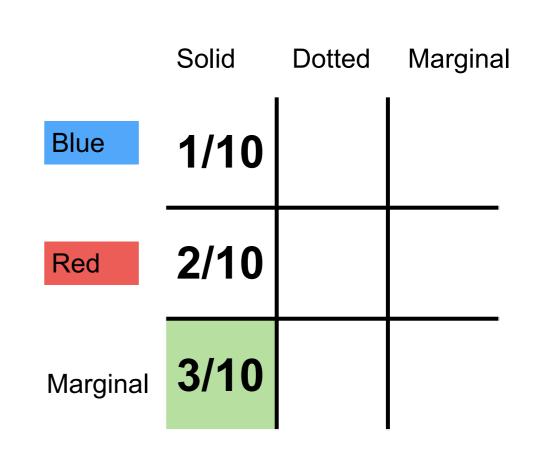
$$P(-) = P(B,S) = 1/10$$

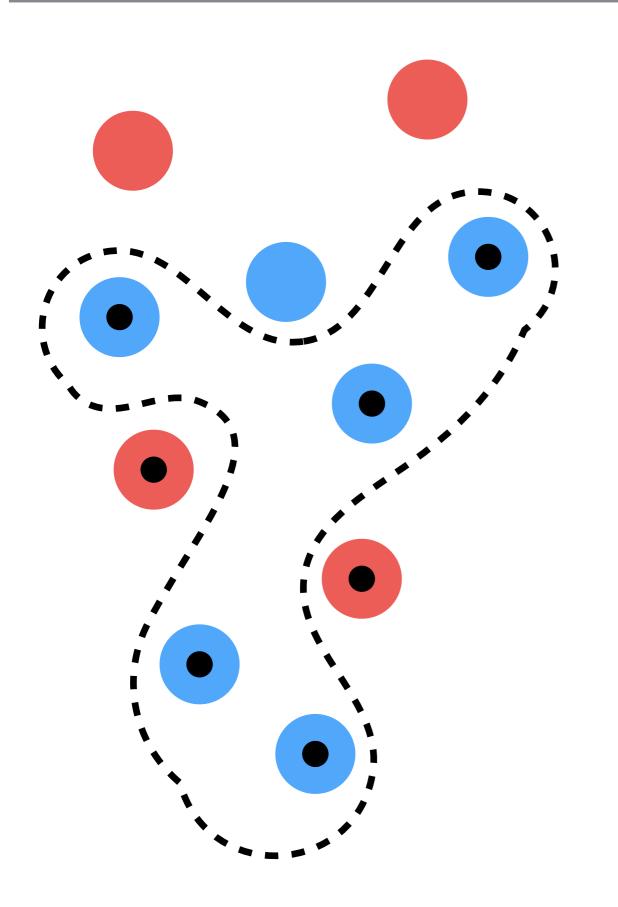




$$P(-) = P(B,S) = 1/10$$

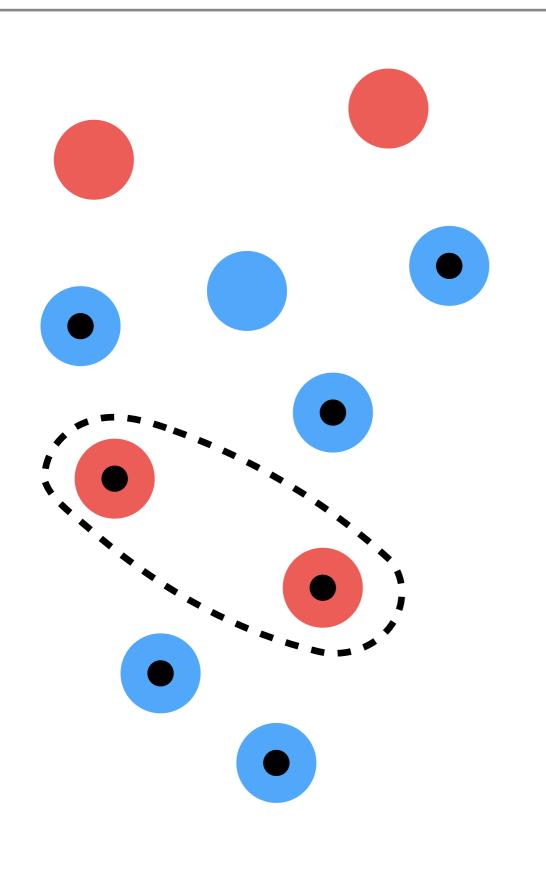






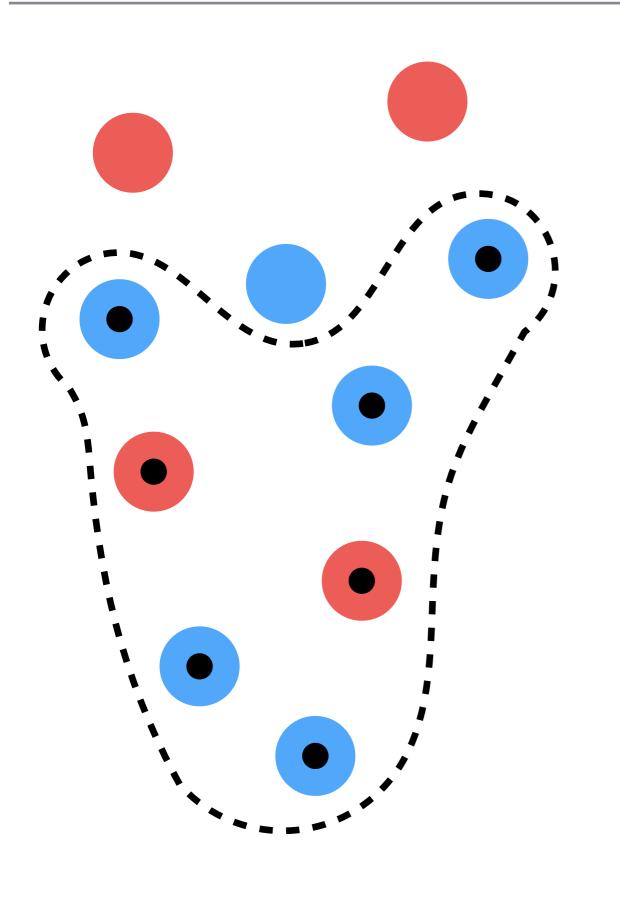
$$P(-) = P(R,S) = 2/10$$

$$P(\bullet) = P(B,D) = 5/10$$



$$P(\bullet) = P(B,D) = 5/10$$

$$P(\bullet) = P(R,D) = 2/10$$

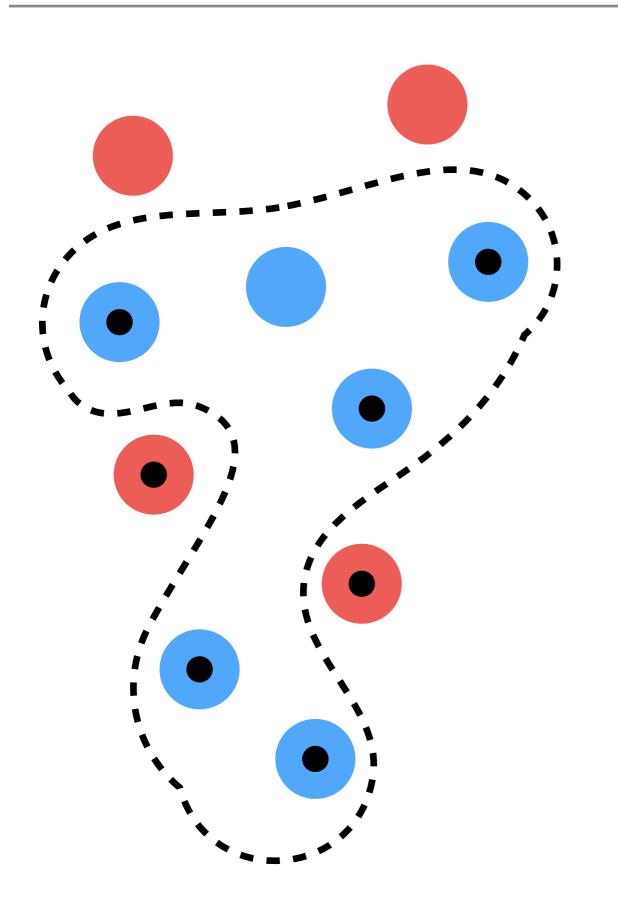


	Solid	Dotted	Marginal
Blue	1/10	5/10	
Red	2/10	2/10	
Marginal	3/10	7/10	

$$P(-) = P(B,S) = 1/10$$

$$P(\bullet) = P(B,D) = 5/10$$

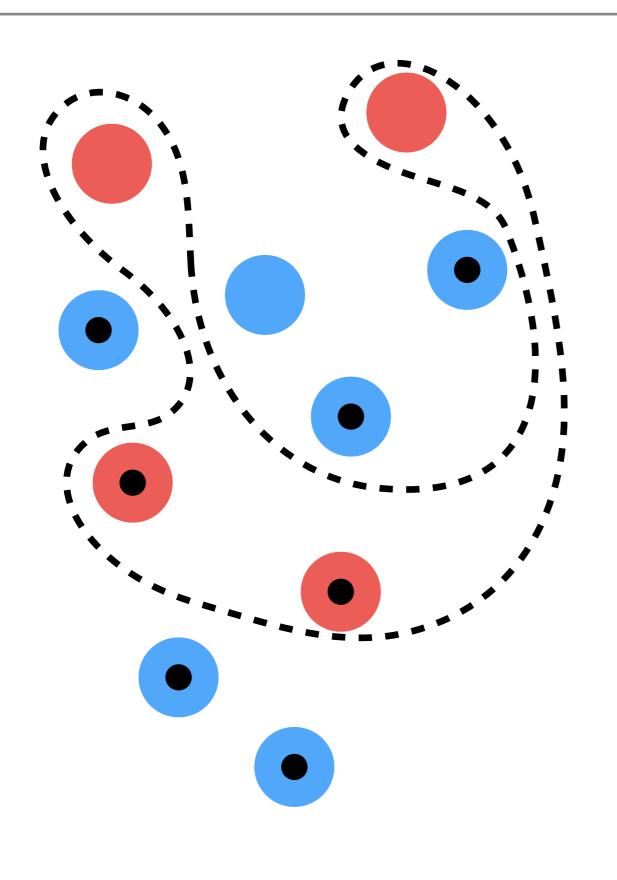
$$P(\bullet) = P(R,D) = 2/10$$



	Solid	Dotted	Margina	
Blue	1/10	5/10	6/10	
Red	2/10	2/10		
Marginal	3/10	7/10		

$$P(\bullet) = P(B,D) = 5/10$$

$$P(\bullet) = P(R,D) = 2/10$$



	Solid	Dotted	Marginal
Blue	1/10	5/10	6/10
Red	2/10	2/10	4/10
Marginal	3/10	7/10	

$$P(-) = P(R,S) = 2/10$$

$$P(\bullet) = P(B,D) = 5/10$$

$$P(\bullet) = P(R,D) = 2/10$$

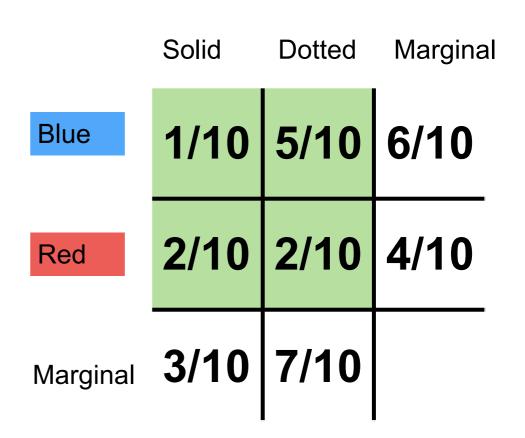
Joint Probabilities

$$P() = P(B,S) = 1/10$$

$$P(-) = P(R,S) = 2/10$$

$$P(\bullet) = P(B,D) = 5/10$$

$$P(\bullet) = P(R,D) = 2/10$$



Joint Probabilities

$$P() = P(B,S) = 1/10$$

$$P(\blacksquare) = P(R,S) = 2/10$$

$$P(\bullet) = P(B,D) = 5/10$$

$$P(\bullet) = P(R,D) = 2/10$$

Marginal Probabilities

$$P(\bullet) + P(\bullet) = P(B) = 6/10$$

$$P(\bullet) + P(\bullet) = P(R) = 4/10$$

$$P(-) + P(-) = P(S) = 3/10$$

$$P(\bullet) + P(\bullet) = P(D) = 7/10$$

Joint Probabilities

$$P() = P(B,S) = 1/10$$

$$P(\blacksquare) = P(R,S) = 2/10$$

$$P(\bullet) = P(B,D) = 5/10$$

$$P(\bullet) = P(R,D) = 2/10$$

Marginal Probabilities

$$P(\bullet) + P(\bullet) = P(B) = 6/10$$

$$P(\bullet) + P(\bullet) = P(R) = 4/10$$

$$P(-) + P(-) = P(S) = 3/10$$

$$P(\bullet) + P(\bullet) = P(D) = 7/10$$

Conditional Probabilities

$$P(S|R) = P(R,S) / P(R)$$

 $P(R,S)$

$$= \frac{P(R,S)}{P(R,S) + P(R,D)}$$

$$= \frac{P(\bullet)}{P(\bullet) + P(\bullet)}$$

Bayes' Rule

P(Parameters | Data) = P(Parameters | Data)

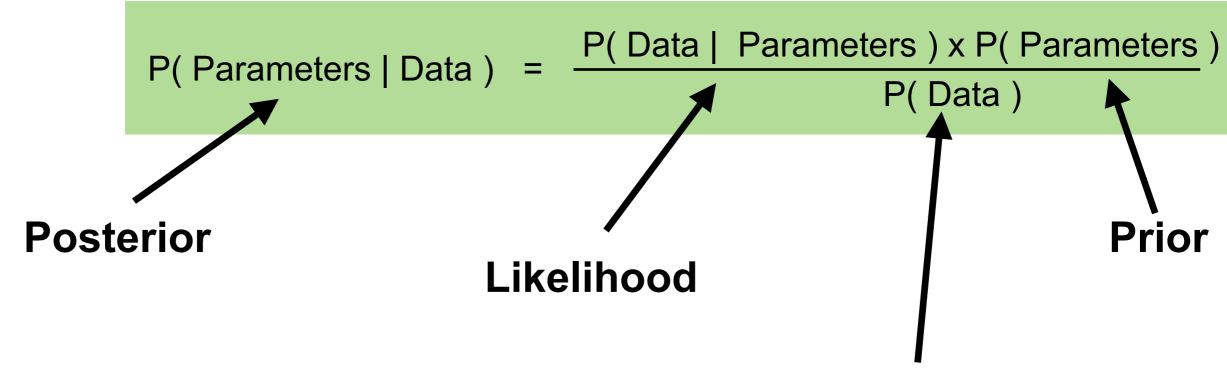
Multiply with P(Data):

Apply rule of conditional probability:

P(Parameters | Data) x P(Data)
P(Data)

= P(Parameters, Data) P(Data)

Again, apply rule of conditional probability:



Marginal Likelihood

Likelihood Function

The likelihood function is defined as the probability of observing the data, X, as a function of the model parameters, Θ .

$$L(\Theta) = f(X, \Theta)$$

For example, in phylogenetic tree estimation the likelihood is defined as the probability of observing the sequence alignment, **X**, under a fully specified phylogenetic model.



Scientific Method

Generic statistical paradigm

pose a substantive question

develop a stochastic model with parameters that, if know, would answer the question

collect observations that are informative about model parameters

find the best estimate of model parameters (by some means) conditioned on (*i.e.*, given) the data at hand

Statistical phylogenetic paradigm

what is the phylogeny of my study group?

develop a phylogenetic model with a tree (and branch lengths) and a Markov model describing how traits change over the tree

assemble a data matrix (e.g., of DNA sequences) sampled from members of your study group

find the best estimate of phylogeny (and other model parameters) using a **likelihood-based** method (maximum-likelihood or Bayesian inference)

Example: Sex-ratio at birth (continued)

Prior:

$$P(p) = \frac{p^{\alpha - 1}(1 - p)^{\beta - 1}}{B(\alpha, \beta)}$$

<u>Likelihood:</u>

$$P(x|p) = {m+f \choose m} p^m (1-p)^f$$

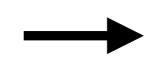
Posterior:

$$P(p|x) = \frac{P(x|p) \times P(p)}{P(x)}$$

$$P(p|x) = \frac{P(x|p) \times P(p)}{\int_0^1 P(x|p) \times P(p)dp}$$

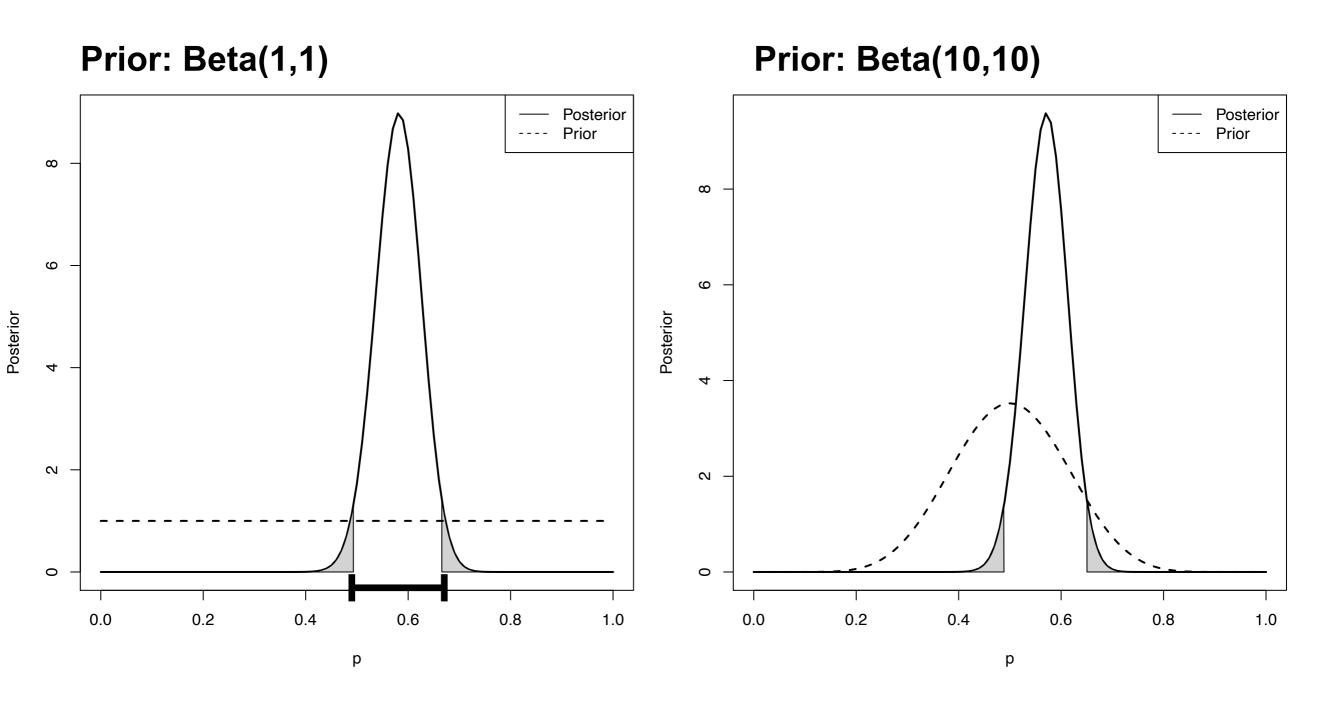
$$P(p|x) = \frac{\binom{m+f}{m} p^{m+\alpha-1} (1-p)^{f+\beta-1} \frac{1}{B(\alpha,\beta)}}{\int_0^1 \left(\binom{m+f}{m} p^{m+\alpha-1} (1-p)^{f+\beta-1} \frac{1}{B(\alpha,\beta)} \right) dp}$$

$$P(p|x) = \frac{p^{m+\alpha-1}(1-p)^{f+\beta-1}}{\int_0^1 (p^{m+\alpha-1}(1-p)^{f+\beta-1}) dp}$$



 $Beta(m+\alpha,f+\beta)$

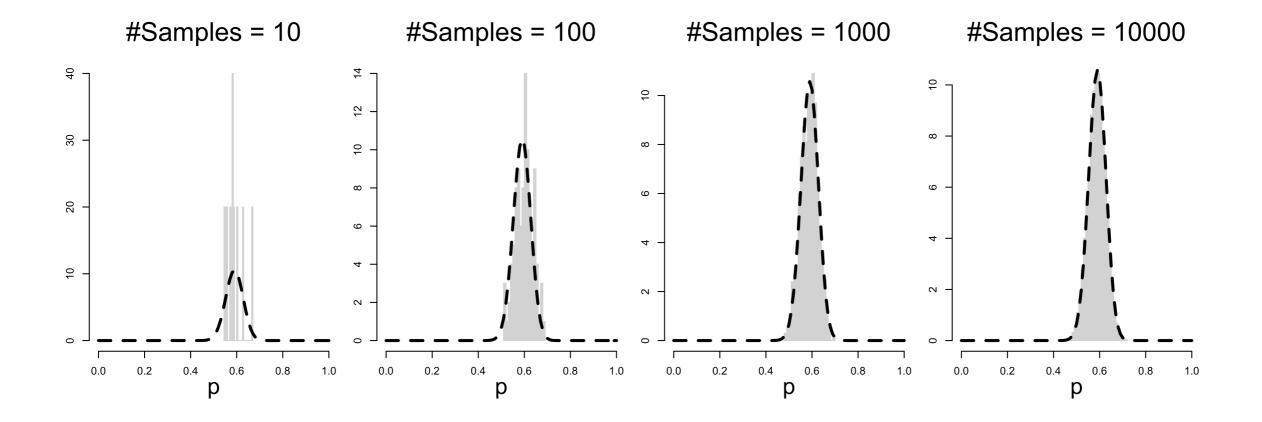
Example: Sex-ratio at birth (continued)



95% HPD (Highest Posterior Density)

What if you don't know the analytical solution for the posterior distribution?

Use the Metropolis-Hastings algorithm to sample from the posterior distribution!



- 1. Initialize the chain with some random values for all parameters, e.g., the tree with branch length.
- 2. Select a parameter to update according to some proposal mechanism (i.e., move).
- 3. Propose a new value, θ' , for the selected parameter.
- 4. Calculate the probability *R* of accepting the move.

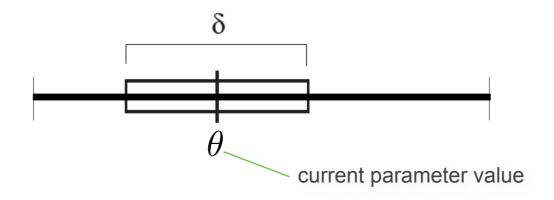
$$R = \min \left[1, \frac{f(\mathbf{X}|\theta')}{f(\mathbf{X}|\theta)} \cdot \frac{f(\theta')}{f(\theta)} \cdot \frac{f(\theta|\theta')}{f(\theta'|\theta)} \right]$$
 Likelihood Ratio Prior Ratio Proposal Ratio

- 5. Generate a uniform random variable, $u \sim \text{Uniform}(0,1)$, and accept if R > u.
- 6. Repeat step 2-5 and store the parameter values to a file every k iterations.

Sliding Window MCMC Move

Sliding window move

- 1. Draw a random variable $u \sim \text{Uniform}(-\delta, \delta)$
- 2. Update θ by the amount of u



- the proposal density is controlled by the tuning parameter, δ
- when δ is large, larger changes will be proposed
- when δ is small, smaller changes will be proposed

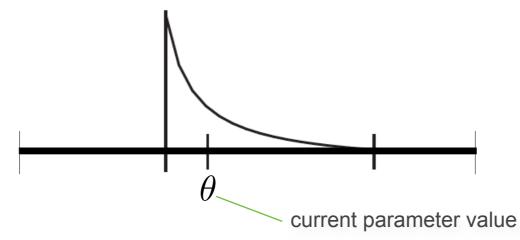
Works well for location parameters.


```
theta ~ dnNormal( mean, standard_deviation )
moves.append( mvSlide(epsilon, delta=0.8, tune=true, weight=3.0) )
```

Scaling (multiplier) MCMC Move

Scaling move

- 1. Draw a random variable $u \sim \text{Uniform}(-\lambda, \lambda)$
- 2. Multiply θ by the amount of e^u
- 3. Compute the Hastings ratio as $HR = e^u$

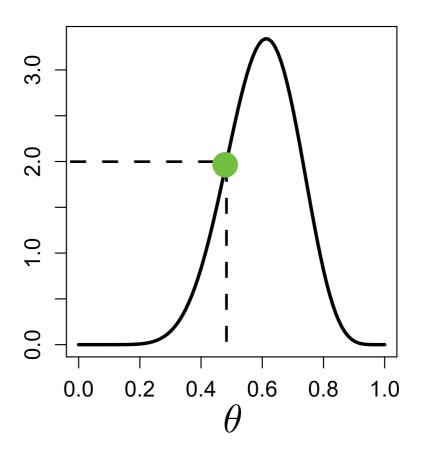


- the proposal density is controlled by the tuning parameter, δ
- when δ is large, larger changes will be proposed
- when δ is small, smaller changes will be proposed

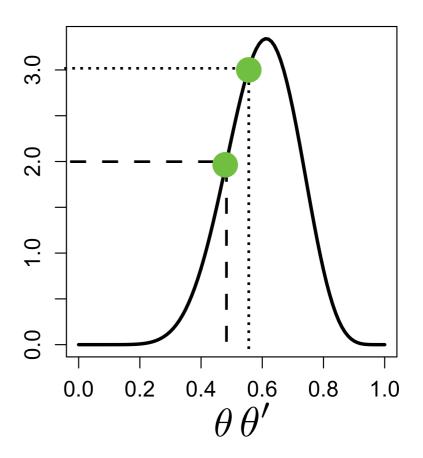
Equivalent to sliding-window proposal with log-transformed x axis Works well for rate parameters.


```
br_lens[i] ~ dnExponential(10.0)
moves.append( mvScale(br_lens[i],lambda=1,tune=true,weight=1) )
```

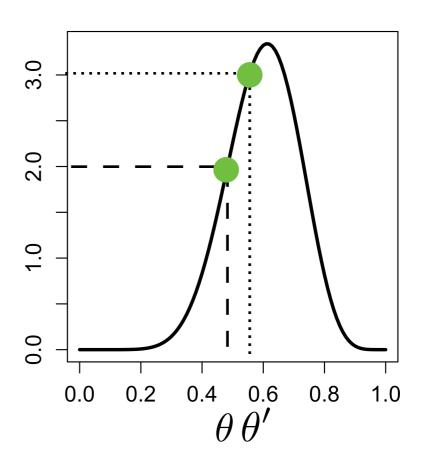
- 1. Initialize the chain with some random values for all parameters, e.g., the tree with branch length.
- 2. Select a parameter to update according to some proposal mechanism (i.e., move).
- 3. Propose a new value, , for the selected parameter.
- 4. Calculate the probability *R* of accepting the move.
- 5. Generate a uniform random variable, $u \sim \text{Uniform}(0,1)$, and accept if R > u.
- 6. Repeat step 2-5 and store the parameter values to a file every k iterations.



- 1. Initialize the chain with some random values for all parameters, e.g., the tree with branch length.
- 2. Select a parameter to update according to some proposal mechanism (i.e., move).
- 3. Propose a new value, , for the selected parameter.
- 4. Calculate the probability *R* of accepting the move.
- 5. Generate a uniform random variable, $u \sim \text{Uniform}(0,1)$, and accept if R > u.
- 6. Repeat step 2-5 and store the parameter values to a file every k iterations.

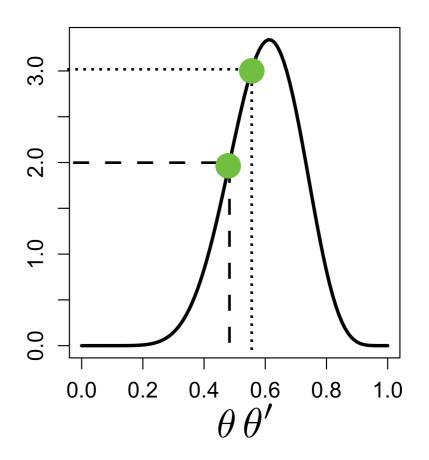


- 1. Initialize the chain with some random values for all parameters, e.g., the tree with branch length.
- 2. Select a parameter to update according to some proposal mechanism (i.e., move).
- 3. Propose a new value, , for the selected parameter.
- 4. Calculate the probability *R* of accepting the move.
- 5. Generate a uniform random variable, $u \sim \text{Uniform}(0,1)$, and accept if R > u.
- 6. Repeat step 2-5 and store the parameter values to a file every k iterations.



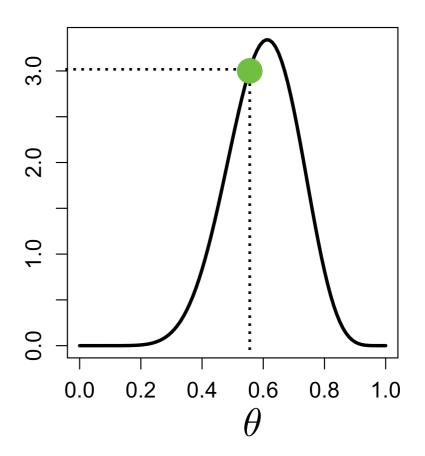
$$R = \min \left[1, \frac{f(\mathbf{X}|\theta')}{f(\mathbf{X}|\theta)} \cdot \frac{f(\theta')}{f(\theta)} \cdot \frac{f(\theta|\theta')}{f(\theta'|\theta)} \right]$$
likelihood prior proposal ratio ratio

- 1. Initialize the chain with some random values for all parameters, e.g., the tree with branch length.
- 2. Select a parameter to update according to some proposal mechanism (i.e., move).
- 3. Propose a new value, , for the selected parameter.
- 4. Calculate the probability *R* of accepting the move.
- 5. Generate a uniform random variable, $u \sim \text{Uniform}(0,1)$, and accept if R > u.
- 6. Repeat step 2-5 and store the parameter values to a file every k iterations.



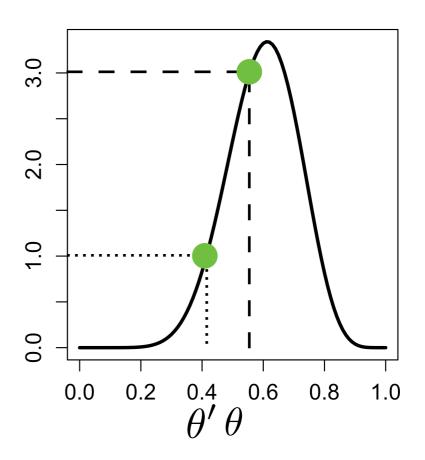
$$R = \min\left[1, \frac{f(\theta'|x)}{f(\theta|x)}\right] = \frac{3}{2}$$

- 1. Initialize the chain with some random values for all parameters, e.g., the tree with branch length.
- 2. Select a parameter to update according to some proposal mechanism (i.e., move).
- 3. Propose a new value, , for the selected parameter.
- 4. Calculate the probability *R* of accepting the move.
- 5. Generate a uniform random variable, $u \sim \text{Uniform}(0,1)$, and accept if R > u.
- 6. Repeat step 2-5 and store the parameter values to a file every k iterations.



$$R = \min\left[1, \frac{f(\theta'|x)}{f(\theta|x)}\right] = \frac{3}{2}$$

- 1. Initialize the chain with some random values for all parameters, e.g., the tree with branch length.
- 2. Select a parameter to update according to some proposal mechanism (i.e., move).
- 3. Propose a new value, , for the selected parameter.
- 4. Calculate the probability *R* of accepting the move.
- 5. Generate a uniform random variable, $u \sim \text{Uniform}(0,1)$, and accept if R > u.
- 6. Repeat step 2-5 and store the parameter values to a file every k iterations.



$$R = \min\left[1, \frac{f(\theta'|x)}{f(\theta|x)}\right] = \frac{1}{3}$$

MCMC Robot

MCMC demonstration software developed by Paul Lewis.

Free Windows and iPhone App: http://www.mcmcrobot.org or

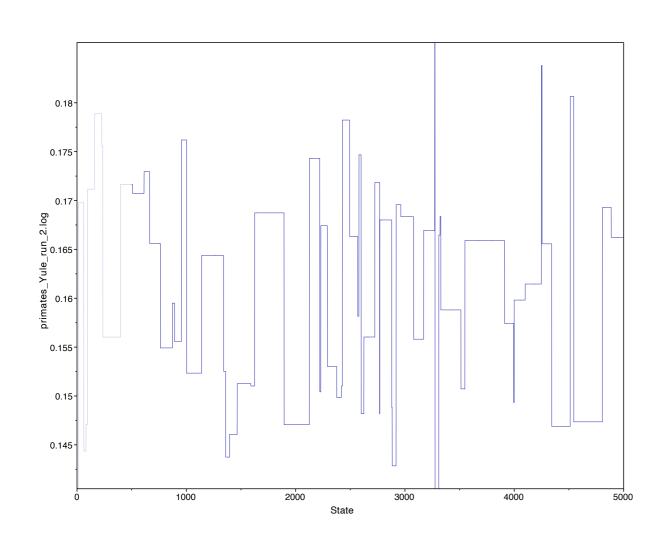
https://phylogeny.uconn.edu/software/#

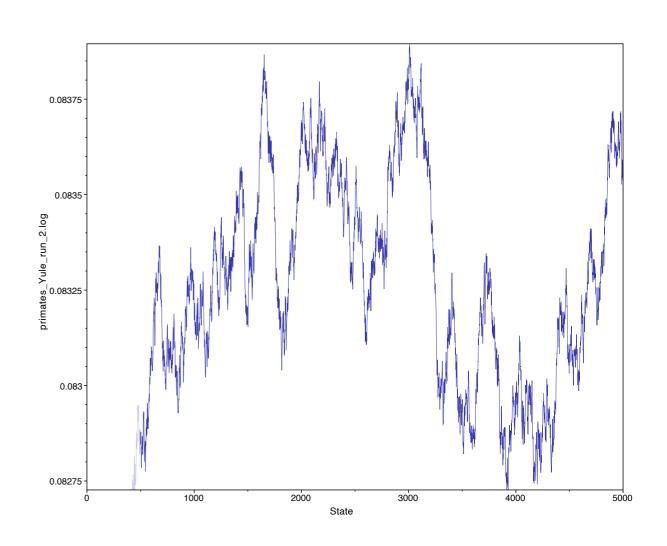
Same idea for Mac developed by John Huelsenbeck.

http://cteg.berkeley.edu/software.html

Effective Sample Size

These are MCMC runs with 5000 iterations. **How many samples from the posterior do these represent?**

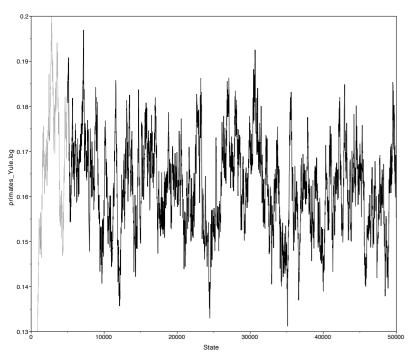




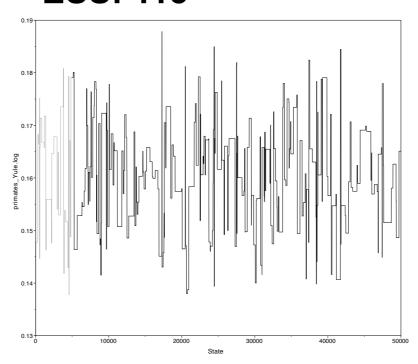
The number of independent samples equivalent to these correlated samples is called the **effective sample size**.

Assessing Convergence

Small change **ESS: 67**

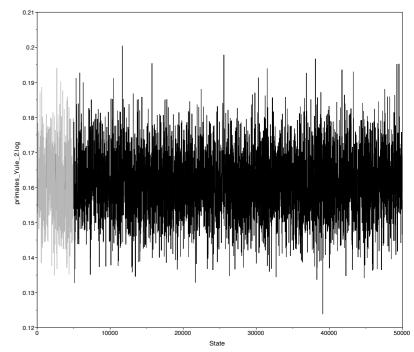


Large change **ESS: 115**

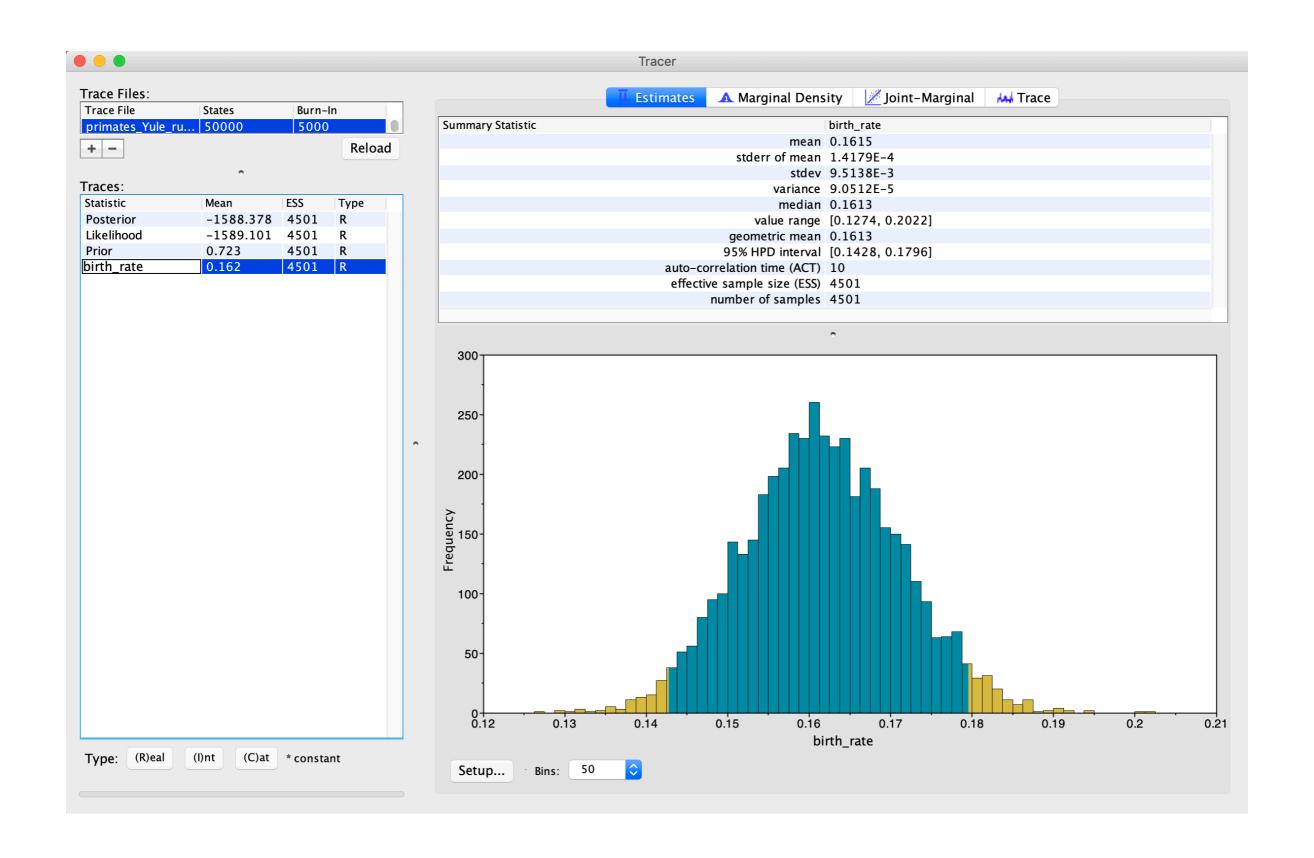


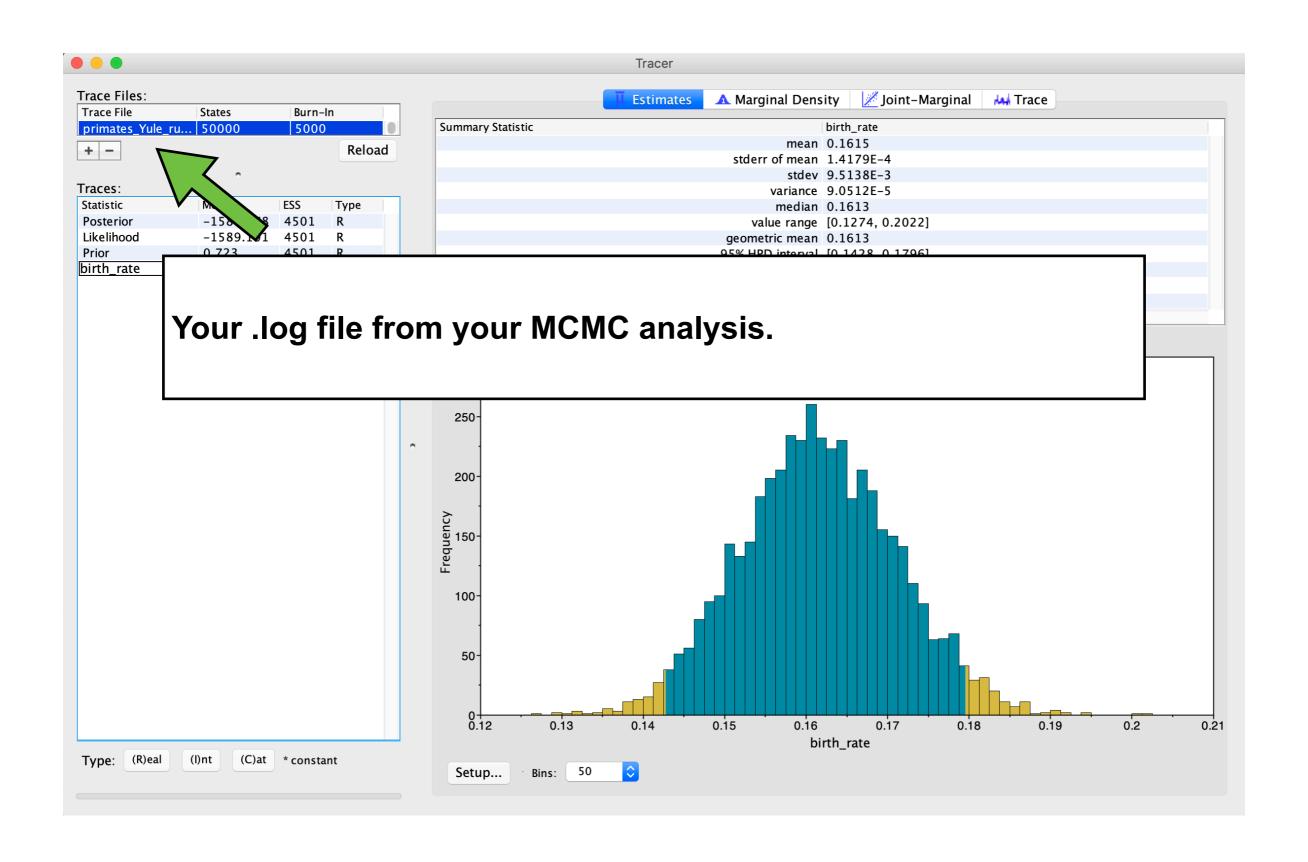
Medium change

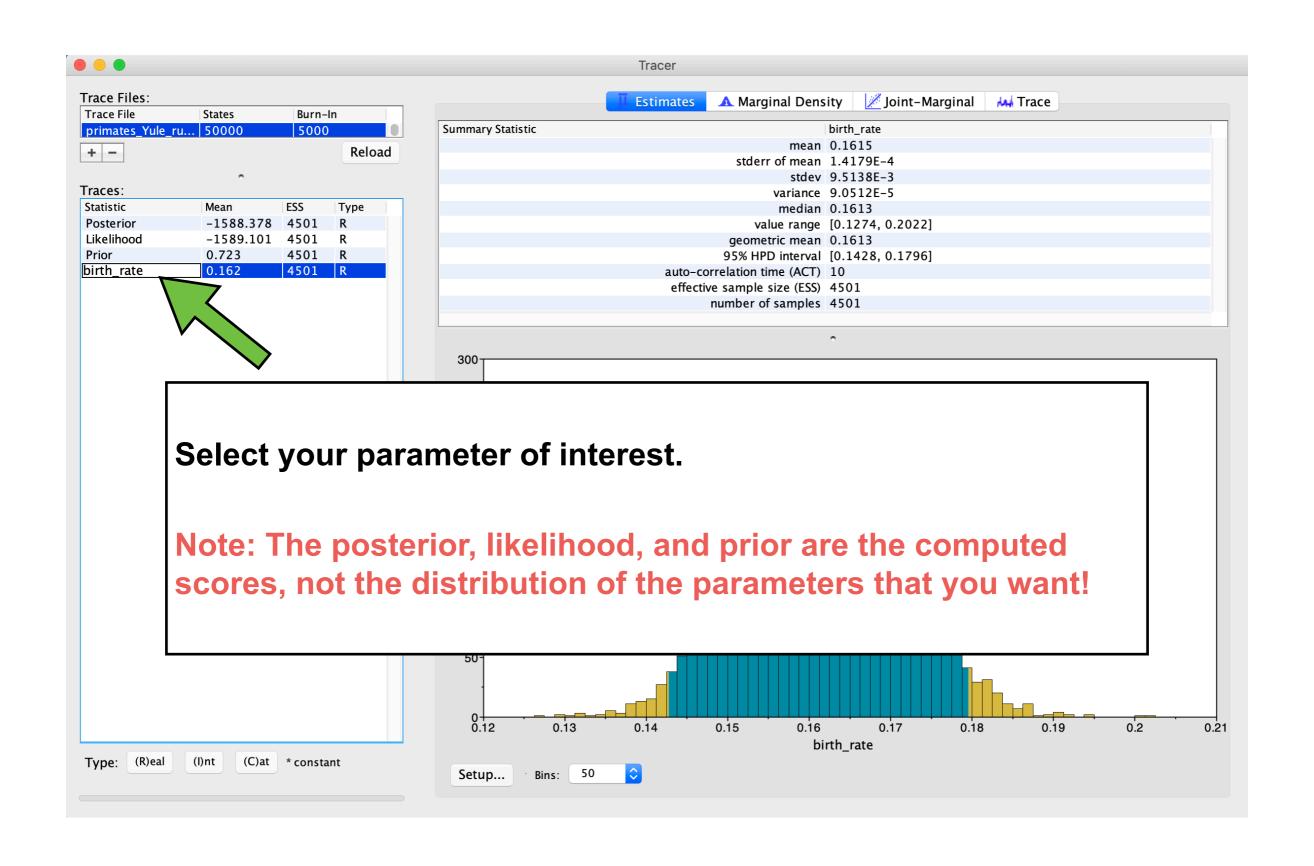
ESS: 3690

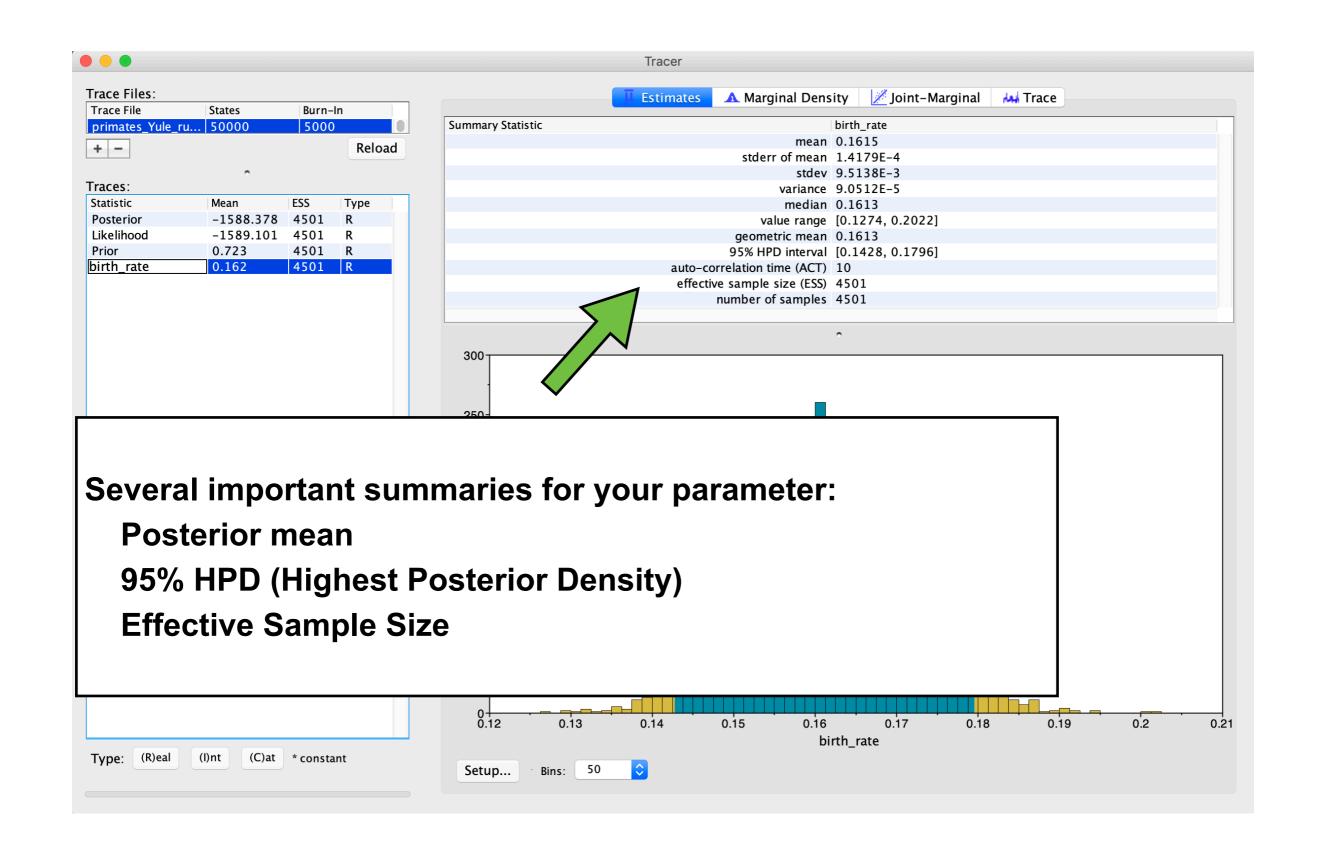


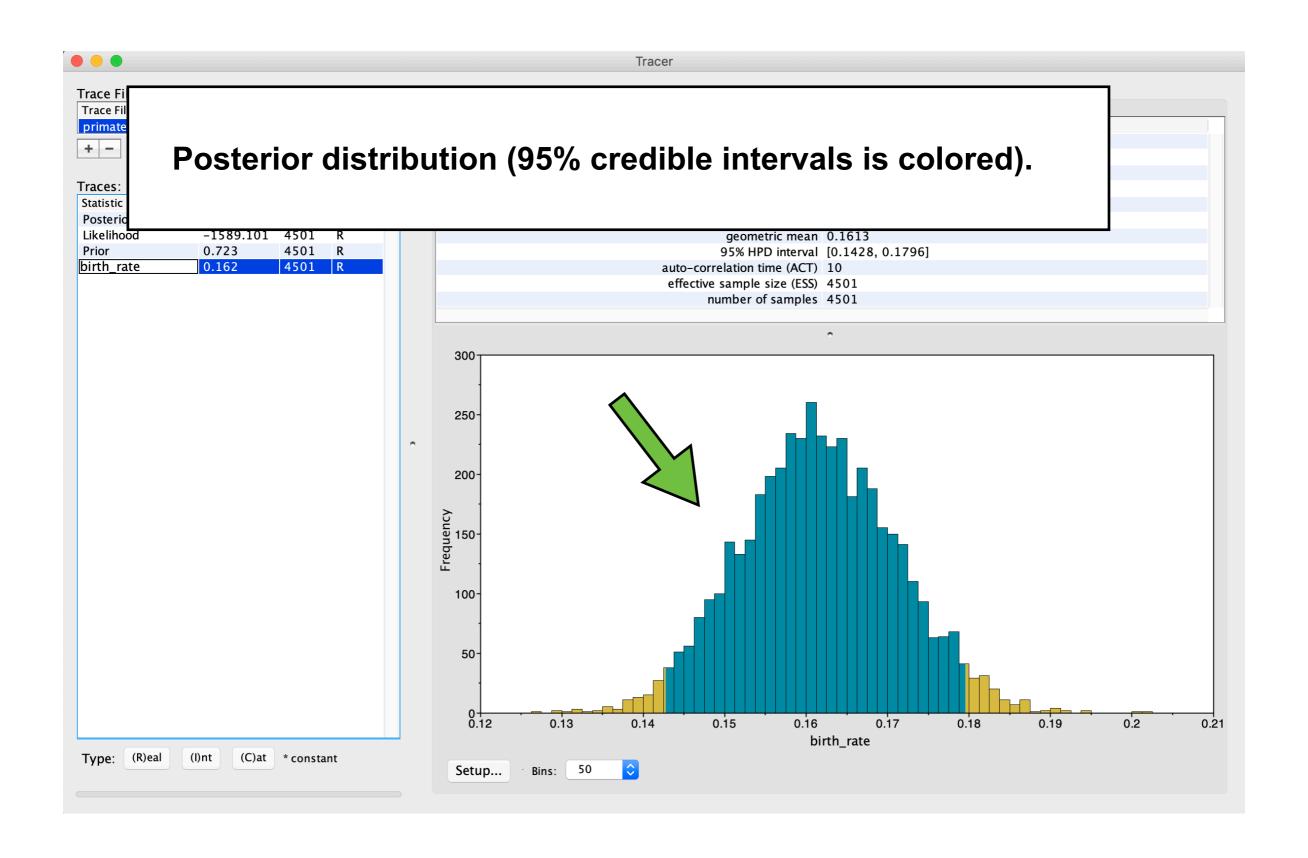
- Good acceptance rate is 0.45 for single parameter and 0.23 for multiple parameters
- Auto-tuning can set the tuning parameter to achieve good acceptance rates
- Effective sample size (ESS) should be >625











Assessing MCMC convergence

1. Precision

The uncertainty of the estimator must be smaller than a given tolerance value. That is, longer chains or more samples will not lead to significantly different estimates, given the tolerated uncertainty.

2. Reproducibility

Repeated chains from random starting values will give the same estimates, given the tolerated uncertainty.

Assessing MCMC convergence

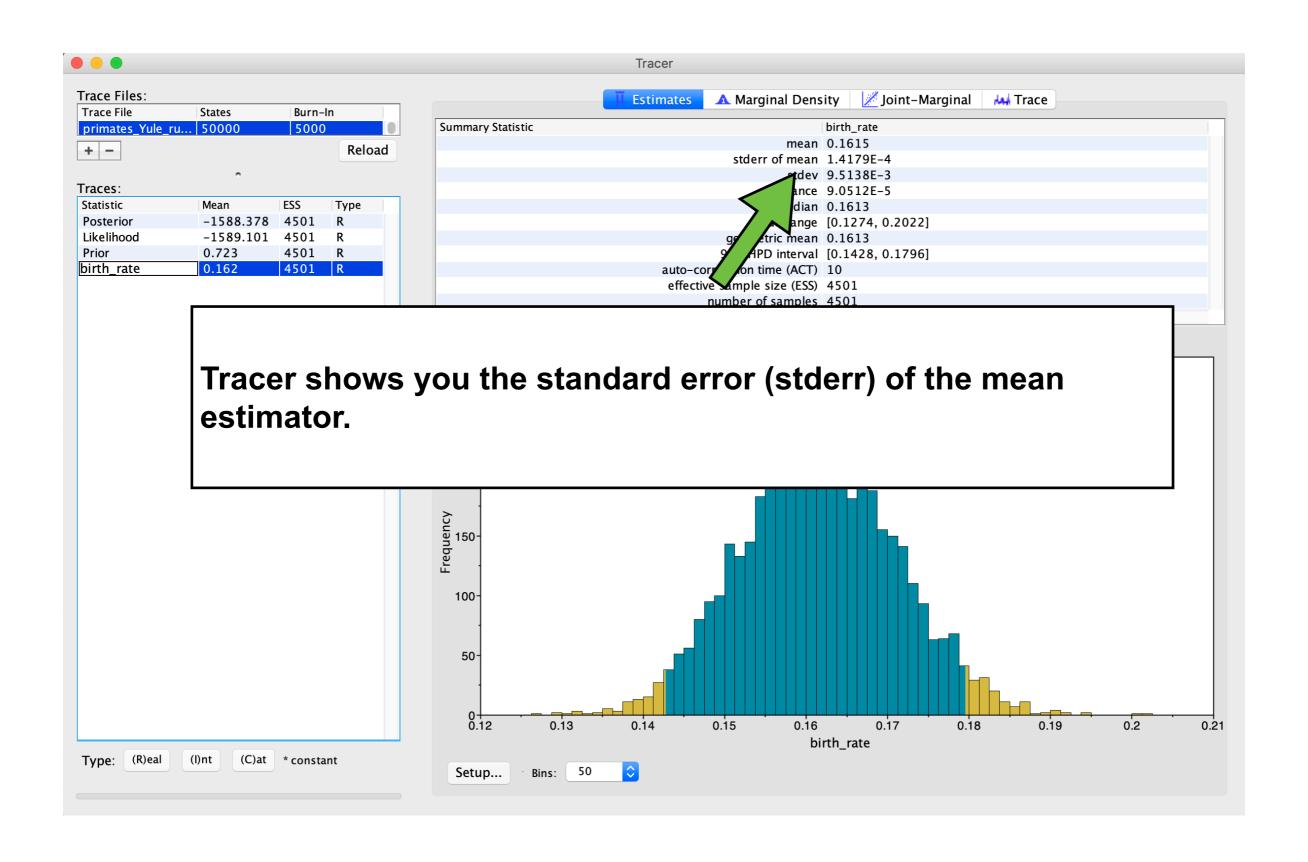
1. Precision

The uncertainty of the estimator must be smaller than a given tolerance value. That is, longer chains or more samples will not lead to significantly different estimates, given the tolerated uncertainty.

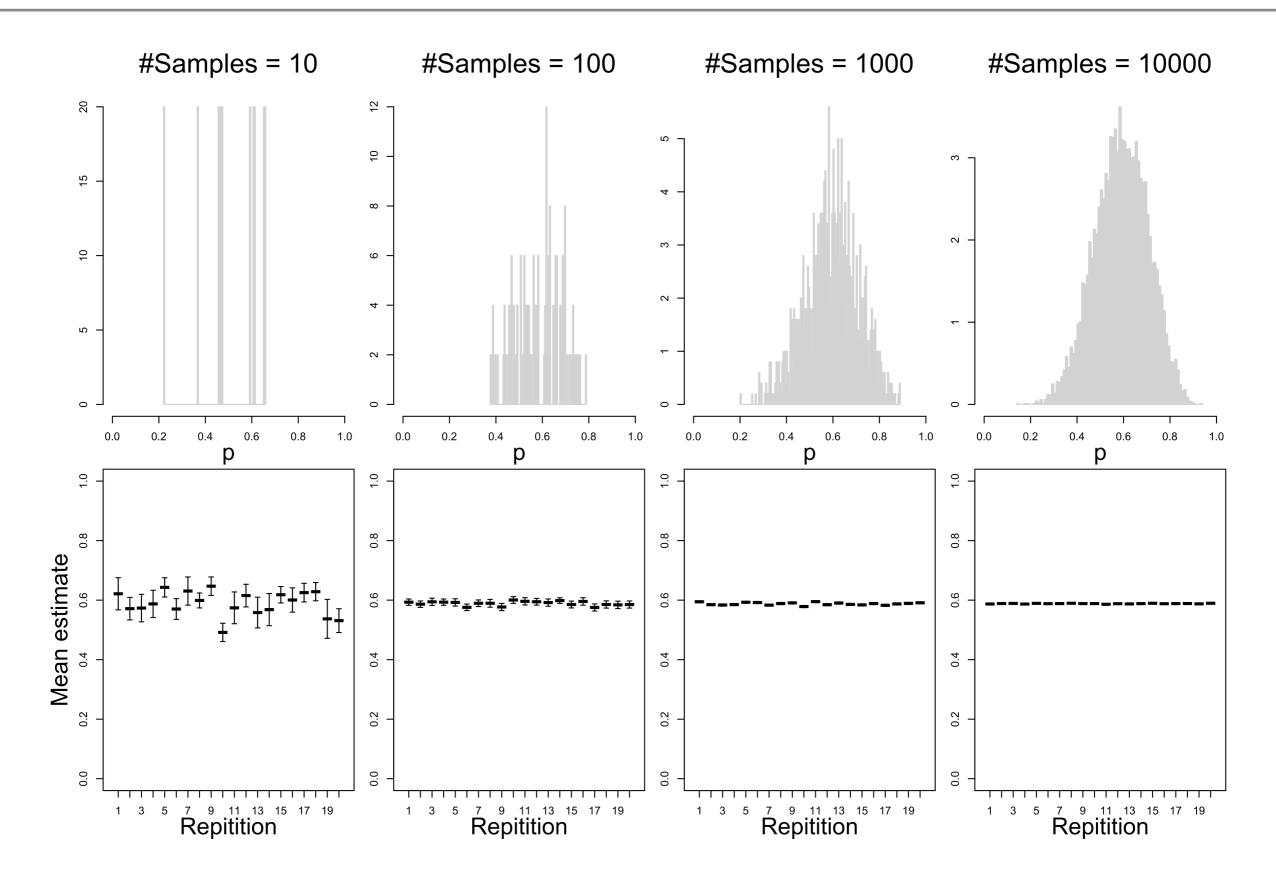
2. Reproducibility

Repeated chains from random starting values will give the same estimates, given the tolerated uncertainty.

Precision of an estimator



Precision of an estimator



Assessing MCMC convergence

1. Precision

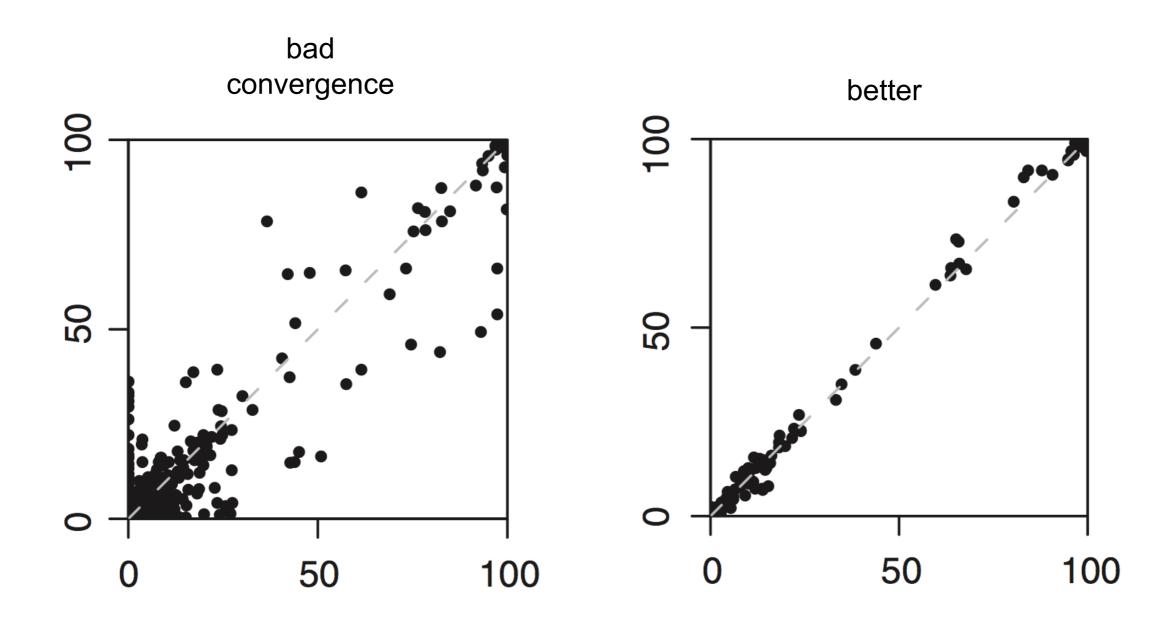
The uncertainty of the estimator must be smaller than a given tolerance value. That is, longer chains or more samples will not lead to significantly different estimates, given the tolerated uncertainty.

2. Reproducibility

Repeated chains from random starting values will give the same estimates, given the tolerated uncertainty.

Comparing trees from replicates

Example: plot of posterior probabilities of clades sampled by two runs



Improving MCMC Performance

If the chain has not converged (according to precision and/or reducibility), what can you do?

1. Burnin

Are all samples drawn from the stationary distribution?

2. Mixing

Is the chain efficiently integrating over the joint posterior probability?

3. Sample Size

Have we collected enough samples to adequately describe the posterior probability distribution?

Improving MCMC Performance

If the chain has not converged (according to precision and/or reducibility), what can you do?

1. Burnin

Are all samples drawn from the stationary distribution?

2. Mixing

Is the chain efficiently integrating over the joint posterior probability?

3. Sample Size

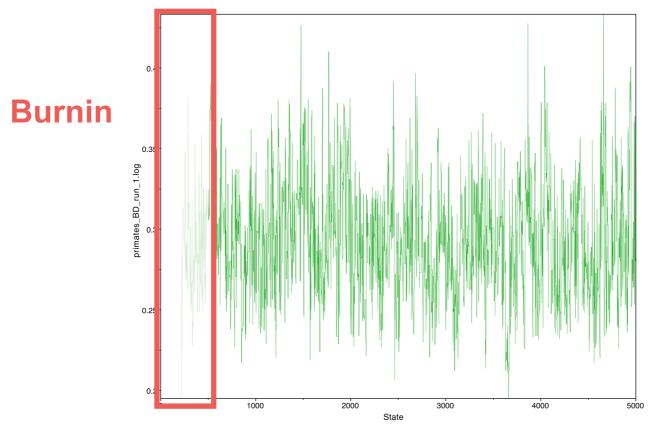
Have we collected enough samples to adequately describe the posterior probability distribution?

Burnin

mymcmc = mcmc(mymodel, moves, monitors, nruns=2, combine="mixed")

mymcmc.burnin(generations=2000,tuningInterval=200) mymcmc.run(generations=20000,tuningInterval=200)

You can run a pre-burnin in RevBayes.



Or you can afterwards remove the first 10% or 25% as burnin.

Improving MCMC Performance

If the chain has not converged (according to precision and/or reducibility), what can you do?

1. Burnin

Are all samples drawn from the stationary distribution?

2. Mixing

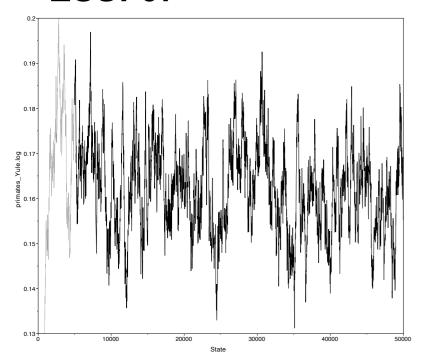
Is the chain efficiently integrating over the joint posterior probability?

3. Sample Size

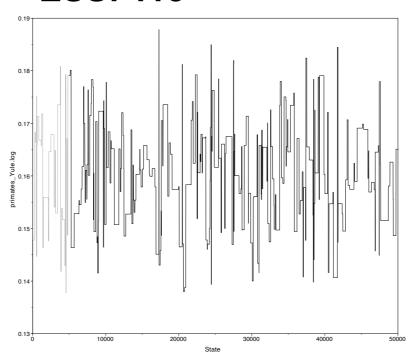
Have we collected enough samples to adequately describe the posterior probability distribution?

Mixing

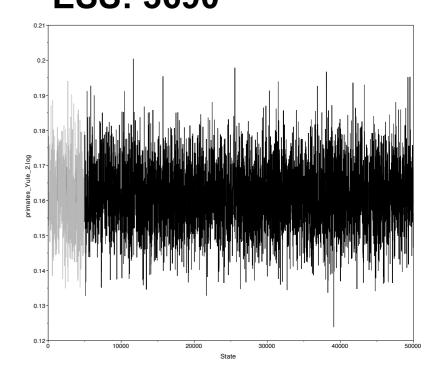
Small change ESS: 67



Large change ESS: 115



Medium change ESS: 3690



- Good acceptance rate is 0.45 for single parameter and 0.23 for multiple parameters
- Auto-tuning can set the tuning parameter to achieve good acceptance rates
- Effective sample size (ESS) should be >625

Mixing in RevBayes

mymcmc = mcmc(mymodel, moves, monitors, nruns=2, combine="mixed") mymcmc.run(generations=20000,tuningInterval=200)

mymcmc.operatorSummary()

Improving MCMC Performance

If the chain has not converged (according to precision and/or reducibility), what can you do?

1. Burnin

Are all samples drawn from the stationary distribution?

2. Mixing

Is the chain efficiently integrating over the joint posterior probability?

3. Sample Size

Have we collected enough samples to adequately describe the posterior probability distribution?

More about MCMC convergence assessment:

- See talk by Luiza Fabreti
- See the R package convenience (https://github.com/lfabreti/convenience)
- https://revbayes.github.io/tutorials/convergence/