
# Molecular clocks

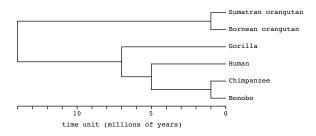
#### **Comparative Genomic Analyses**

Rui Borges Vetmeduni Vienna

### The molecular clock

The genetic distance of two sequences coding for the same protein, but isolated from different species, seems to increase linearly with the divergence time.



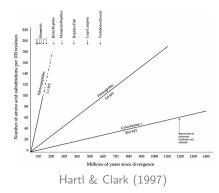

Zuckerkandl & Pauling (1965)

### The molecular clock

#### Exercise

We want to know if a certain gene shows a constant rate of evolution among six great apes.

|                | 1          | 11         | 21         | 31         | 41         |
|----------------|------------|------------|------------|------------|------------|
| Bonobo         | ACTGGTATAG | GTGGCACGCA | GCCCGTTATA | AGACGTTTCA | TAGCAAAGGG |
| Chimpanzee     | ACTGGTATAG | GTGGCACGCA | GCCCGTTATT | AGACGTTTCA | TAGCAAAGGG |
| Human          | ACTGGTATCC | GTAGCACGCA | GCCCGTTATT | AGACGTTTCA | TCGCAAAGGG |
| Gorilla        | ACTGGTATCC | GTAGCAAGCA | GCCCGCTTTG | AGAGCTTTCT | TCGCAAAGGG |
| Bornean orang  | ATTGGCATCC | CTAGCAAGCC | GCCCCGTTTA | AGTCATTTCA | TCGCAAAGGA |
| Sumatran orang | AGTGGTATCC | CTAGCAAGCC | GCCCCGTTTT | AGTCATTTCA | TCGCAAAGGA |

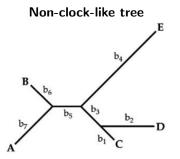


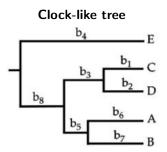

Plot the p-distance as a function of the divergence time for each pair of species and conclude on the existence of a molecular clock for this gene.

### The molecular clock

The rate of evolution for any given protein is constant over time.

- implies the existence of a molecular clock ticking faster or slower for different genes
- more or less constant rate for any given gene among different phylogenetic lineages





The molecular clock is central to our understanding of evolutionary processes.

- a tool for estimating historical dates and rates of evolution
- provides a formal description of the substitution process
- allows for more accurate phylogenetic reconstructions
- deviations from clock-like behavior may reveal adaptive evolution, relaxed functional constraints, or changes in effective population size.

According to the molecular clock hypothesis

two taxa sharing a common ancestor t years ago should have accumulated more or less the same number of substitutions during time t





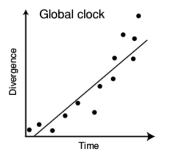
- unrooted tree
- ▶ 2n − 3 independent branches
- b<sub>1</sub>, b<sub>2</sub>, b<sub>3</sub>, b<sub>4</sub>, b<sub>5</sub>, b<sub>6</sub> and b<sub>7</sub> need to be estimated

- rooted tree
- ▶ n − 1 independent branches
- b<sub>1</sub>, b<sub>3</sub>, b<sub>4</sub> and b<sub>6</sub> need to be estimated

The branch lengths of a phylogeny can be estimated by enforcing a global clock.

the molecular clock is the null hypothesis and represents a special case of the more general alternative hypothesis assuming a different rate for each branch

 the LRT can be used to evaluate whether or not the sequences have been evolving at the same rate Felsenstein (1988)


### Hypotheses: H<sub>0</sub>: global clock versus H<sub>1</sub>: non-clock

Test statistic: LRT = 2(l<sub>1</sub> - l<sub>0</sub>)

#### ► Decision rule: *LRT* follows a $\chi^2$ distribution with n-2 degrees of freedom

Empirical studies that employed rigorous statistical testing have revealed non-clock behavior in many gene sequences

 potential sources of rate variation are generation times, replication and repair mechanisms and differences in natural selection Bromham and Penny (2003)

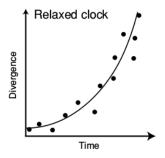




- same rate for all the branches
- oversimplified and badly fitting model

- too many parameters
- the contribution of evolutionary time and rate is unidentifiable

The clock hypothesis could be relaxed by allowing separate rate parameters to different branches or collections of branches


- Local molecular clock model Yoder & Yang (2000)
- comparison of local clock models with the global clock model possible via LRT
- specify the null hypothesis beforehand may be difficult



Bayesian treatment of clock models assume rates of evolution vary through time

(Kishino et al., 2001; Thorne et al., 1998)

- autocorrelated relaxed clock rates across branches are autocorrelated
- uncorrelated relaxed clock branch-specific rates are drawn independently from an underlying rate distribution



# Applications of the molecular clock

#### pathogen epidemiology

among others Korber et al. (2000) and Lemey et al. (2006)

- the study of the origin of the main types of animals for review see Bromham & Penny (2003)
- studies of historical changes in mammalian population sizes Shapiro et al. (2004)
- evidence against deliberate virus transmission in an HIV outbreak de Oliveira et al. (2006)

### Literature

**The phylogenetic handbook** by Lemey, Salemi and Vandamme (2009) Cambridge University Press

Chapter 11: sections 11.1, 11.2, 11.3, 11.5 and 11.6